×

Propagation of elastic surface waves along a cylindrical cavity of arbitrary cross section. (English) Zbl 0739.73009

The propagation of elastic surface waves guided by the free surface of an infinitely long cylinder of arbitrary cross sections is formulated as an eigenvalue problem for an unbounded selfadjoint operator. The existence of a hierarchy of guided modes is proved. Two of them propagate for any value of the wave number whereas all of the others exist only beyond a cut-off wave number. For any fixed value of the wave number, only a finite number of mode propagate.

MSC:

74J15 Surface waves in solid mechanics
PDF BibTeX XML Cite
Full Text: DOI EuDML

References:

[1] M. ABRAMOWITZ, I. STEGUN, Handbook of mathematical functions Dover publications (1968)
[2] A. R. ADAMS, Sobolev spaces Academic Press (1975) Zbl0314.46030 MR450957 · Zbl 0314.46030
[3] A. BAMBERGER, A. S. BONNET, Calcul des modes guidés d’une fibre optique Analyse numérique Report n^\circ 143, CMAP, Ecole Polytechnique (1986)
[4] A. BAMBERGER, Y. DERMENJIAN, P. JOLY, < Mathematical Analysis of the Propagation of Elastic Guided Waves in Heterogeneous Media > , INRIA Report n^\circ 1013 (1989) to appear in Journal of Differential Equations (1990) Zbl0714.35045 MR1079862 · Zbl 0714.35045
[5] A. BAMBERGER, P. JOLY, M. KERN, Etude mathématique des modes élastiques guidés par l’extérieur d’une cavité cylindrique de section arbitraire Report n^\circ 650, INRIA (1987)
[6] A. BAMBERGER, P. JOLY, M. KERN, Propagation d’ondes élastiques guidées par la surface d’une cavité cylindrique de section arbitraire CRAS, Paris, série I, t 504, n^\circ 3, pp 59-62 (1987) Zbl0617.73029 MR878826 · Zbl 0617.73029
[7] M. BIOT, Propagation of elastic waves in a liquid filled cylindrical bore surrounded by an elastic solid J Appl Physics, 24, pp 515-521 (1953) Zbl0053.31804 MR55893 · Zbl 0053.31804
[8] A. BOSTROM, A. D. BURDEN, Propagation of elastic surface waves and their excitation by a point force J Acoust Soc Amer, 72, pp 998-1004 (1982)
[9] A. D. BURDEN, The propagation of elastic surface waves along cylindrical cavities of general cross section Wave Motion, 7, pp 153-168 (1985) Zbl0553.73015 · Zbl 0553.73015
[10] R. COURANT, D. HILBERT, Methods of Mathematical Physics. Vol. I, Wiley (1962). Zbl0729.00007 MR1013360 · Zbl 0729.00007
[11] Y. DERMENJIAN, J. C. GUILLOT, Scattering of elastic waves in a perturbed isotropic half-space with a free boundary. The limiting absorption principle. Report n^\circ 491, INRIA (1986). Zbl0647.73011 · Zbl 0647.73011
[12] N. DUNFORD, J. T. SCHWARTZ, Linear operators. Vol. II, Wiley (1963).
[13] P. JOLY, Analyse numérique des ondes de Rayleigh. 3rd cycle Thesis, University Paris IX (1983).
[14] P. E. LAGASSE, Higher order finite element analysis of topographic guides supporting elastic surface waves. J. Acoust. Soc. Amer., 53, pp. 1116-1122 (1973).
[15] P. E. LAGASSE, I. M. MASON, E. A. ASH, Acoustic surface wave guides. Analysis and assessment. IEEE Trans. Microwave Theory Tech. 21, pp. 225-236 (1973).
[16] D. MARCUSE, Theory of dielectric optical waveguides. Academic Press (1974).
[17] J. MIKLOWITZ, The theory of elastic waves and waveguides. North-Holland (1980). Zbl0565.73025 MR515886 · Zbl 0565.73025
[18] I. A. MINDLIN, Free elastic waves on the surface of a tube of infinite thickness. J. Appl. Math. Mech., 27, pp. 823-828 (1963). Zbl0127.41502 · Zbl 0127.41502
[19] J. A. MORRISON, Propagation of high frequency surface waves along cylinders of general cross section. J. Math. Phys., 16, pp. 1786-1794 (1975). Zbl0309.73025 MR381436 · Zbl 0309.73025
[20] J. A. NITSCHE, On Korn’s second inequality. RAIRO Analyse Numérique, 15, pp. 237-248 (1981). Zbl0467.35019 MR631678 · Zbl 0467.35019
[21] Lord RAYLEIGH, On waves propagating along the plane surface of an elastic solid. Proc. London Math. Soc., 17, p. 411 (1885). JFM17.0962.01 · JFM 17.0962.01
[22] M. REED, B. SIMON, Methods of modern mathematical physics. Academic Press (1981). Zbl0459.46001 · Zbl 0459.46001
[23] F. RELLICH, Uber das asymptotiche Verhalten der Lösungen von \Delta u + ku = 0 in unendlichen Gebieten. Jber. Deutsche Math. Verein., 53, pp. 57-64 (1943). Zbl0028.16401 MR17816 · Zbl 0028.16401
[24] F. SANTOSA, On the solution of elastodynamics problems for infinite cylinders. Report ONR/SRO, Cornell University (1986).
[25] M. SCHECHTER, Operator methods in quantum mechanics. North Holland (1981). Zbl0456.47012 MR597895 · Zbl 0456.47012
[26] SCHULENBERGER, Elastic waves in the half-space R2+. J. Diff. Eq., 29, pp. 405-438 (1978). Zbl0404.35066 MR507488 · Zbl 0404.35066
[27] J. WEIDMAN, Linear operators in Hilbert Spaces. Springer (1981). Zbl0434.47001 · Zbl 0434.47001
[28] C. H. WILCOX, Scattering theory for the d’Alembert equation in unbounded domains. Lecture Notes in Mathematics No. 442, Springer (1975). Zbl0299.35002 MR460927 · Zbl 0299.35002
[29] L. O. WILSON, J. A. MORRISON, Propagation of high frequency elastic surface waves along cylinders of general cross section. J. Math. Phys., 16, pp. 1795-1805 (1975). Zbl0313.73020 MR381437 · Zbl 0313.73020
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.