Clermont, J. R.; de la Lande, M. E.; Pham Dinh Tao; Yassine, A. Analysis of plane and axisymmetric flows of incompressible fluids with the stream tube method: Numerical simulation by trust-region optimization algorithm. (English) Zbl 0739.76050 Int. J. Numer. Methods Fluids 13, No. 3, 371-399 (1991). Summary: New concepts for the study of incompressible plane or axisymmetric flows are analysed by the stream tube method. Flows without eddies and pure vortex flows are considered in a transformed domain where the mapped streamlines are rectilinear or circular. The transformation between the physical domain and the computational domain is an unknown of the problem. In order to solve the nonlinear set of relevant equations, we present a new algorithm based on a trust region technique which is effective for nonconvex optimization problems. Experimental results show that the new algorithm is more robust compared to the Newton-Raphson method. Cited in 5 Documents MSC: 76M25 Other numerical methods (fluid mechanics) (MSC2010) 76M30 Variational methods applied to problems in fluid mechanics 76B47 Vortex flows for incompressible inviscid fluids Keywords:incompressible plane or axisymmetric flows; stream tube method; trust region technique; Newton-Raphson method × Cite Format Result Cite Review PDF Full Text: DOI References: [1] and , Computational Analysis of Polymer Processing, Applied Science, London and New York, 1983. · doi:10.1007/978-94-009-6634-5 [2] Navie-Stokes Equations, North-Holland, Amsterdam, 1979. [3] Dafermos, Commun. PDE 4 pp 219– (1979) [4] Joseph, Arch. Rat. Mech. Anal. 87 pp 213– (1985) [5] Computational Fluid Dynamics, Hermosa, Albuquerque, NM, 1972. · Zbl 0251.76002 [6] Finite Element Analysis in Fluid Dynamics, McGraw-Hill, New York, 1978. [7] and , ’Flow in locally constricted tubes at low Reynolds numbers’, J. Appl. Mech., 9-16 (1970). · Zbl 0191.56105 [8] and , ’A finite difference simulation of extrudate swell’, Proc. 2nd World Congr. of Chemical Engineering, Vol. 6, Montreal, 1981, pp. 277-281. [9] Smith, Appl. Math. Comput. 10/11 pp 137– (1982) [10] Thompson, J. Comput. Phys. 15 pp 299– (1974) [11] Clermont, C. R. Acad. Sci. Paris (Sér. II.1) 297 (1983) [12] Clermont, Eng. Comput. 3 pp 339– (1986) [13] An Introduction to Fluid Dynamics, Cambridge University Press, Cambridge, 1967. · Zbl 0152.44402 [14] Duda, Chem. Eng. Sci. 22 pp 855– (1967) [15] Adachi, Rheol. Acta 22 pp 326– (1983) [16] Papanastasiou, J. Non-Newtonian Fluid Mech. 22 pp 271– (1986) [17] Truesdell, Handb. Phys. III 3 (1965) [18] Clermont, Mech. Res Commun. 13 pp 239– (1986) [19] ’Recent developments in algorithm and software for trust region methods’, Mathematical Programming, The State of the Art, Springer, Berlin, 1983, pp. 258-287. · doi:10.1007/978-3-642-68874-4_11 [20] Sorensen, SIAM J. Numer, Anal. 19 pp 409– (1982) [21] Tao, Math. Modell. Numer. Anal. 24 pp 523– (1990) [22] ’Etudes adaptatives et EDratives de certains algorithmes en optimisation. Implémentations effectives et applications’, Doctoral Thesis, Applied Mathematics Department, Joseph Fourier University, 1989. [23] Gay, SIAM J. Sci. Stat. Comput. 2 pp 186– (1981) [24] and , Numerical Methods for Unconstrained Optimization and Nonlinear Equations, Prentice-Hall, Englewood Cliffs, NJ, 1983. [25] Programmation Mathématique, Tome 1, Dunod, Paris, 1983. [26] and , Practical Optimization, Academic Press, New York, 1981. · Zbl 0503.90062 [27] Practical Methods of Optimization, Vol. 1, Wiley, New York, 1980. [28] Introduction to Linear and Nonlinear Programming, Addison-Wesley, Reading, MA, 1972. [29] Theory of Matrix, Academic Press, New York and London, 1969. [30] Introduction to Matrix Computation, Academic Press, New York, 1973. [31] Convex Analysis, Princeton University Press, Princeton, NJ, 1970. · Zbl 0932.90001 · doi:10.1515/9781400873173 [32] Reinsch, Numer. Math. 16 pp 451– (1971) [33] ’An algorithm for minimization using exact second derivatives’, Report TP515, Atomic Energy Research Establishment, Harwell, 1973. [34] Shultz, SIAM J. Numer. Anal. 22 pp 47– (1985) [35] Shultz, Math. Program. 40 pp 247– (1988) This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.