Gross, Benedict H.; Garibaldi, Skip Minuscule embeddings. (English) Zbl 1542.20216 Indag. Math., New Ser. 32, No. 5, 987-1004 (2021). Summary: We study embeddings \(J \to G\) of simple linear algebraic groups with the following property: the simple components of the \(J\) module \(\operatorname{Lie}(G)/\operatorname{Lie}(J)\) are all minuscule representations of \(J\). One family of examples occurs when the group \(G\) has roots of two different lengths and \(J\) is the subgroup generated by the long roots. We classify all such embeddings when \(J = \mathrm{SL}_2\) and \(J = \mathrm{SL}_3\), show how each embedding implies the existence of exceptional algebraic structures on the graded components of \(\operatorname{Lie}(G)\), and relate properties of those structures to the existence of various twisted forms of \(G\) with certain relative root systems. Cited in 2 Documents MSC: 20G05 Representation theory for linear algebraic groups 20G15 Linear algebraic groups over arbitrary fields 17B45 Lie algebras of linear algebraic groups 17B70 Graded Lie (super)algebras Keywords:minuscule representation; hyperdeterminant; Jordan pair; composition algebra × Cite Format Result Cite Review PDF Full Text: DOI arXiv References: [1] Allison, B., A class of nonassociative algebras with involution containing the class of Jordan algebras, Math. Ann., 237, 2, 133-156 (1978) · Zbl 0368.17001 [2] Allison, B., Models of isotropic simple Lie algebras, Comm. Algebra, 7, 17, 1835-1875 (1979) · Zbl 0422.17006 [3] Allison, B.; Faulkner, J., A Cayley-Dickson process for a class of structurable algebras, Trans. Amer. Math. Soc., 283, 1, 185-210 (1984) · Zbl 0543.17015 [4] Allison, B.; Faulkner, J., Dynkin diagrams and short Peirce gradings of Kantor pairs, Comm. Algebra, 47, 11, 4381-4419 (2019) · Zbl 1473.17049 [5] Azad, H.; Barry, M.; Seitz, G., On the Structure of Parabolic Subgroups. On the Structure of Parabolic Subgroups, Comm. Algebra, 18, 2, 551-562 (1990) · Zbl 0717.20029 [6] Benkart, G.; Elduque, A., Lie Algebras with prescribed \(\mathfrak{sl}_3\) decomposition, Proc. Amer. Math. Soc., 140, 8, 2627-2638 (2012) · Zbl 1329.17021 [7] Benkart, G.; Zelmanov, E., Lie algebras graded by finite root systems and intersection matrix algebras, Invent. Math., 126, 1, 1-45 (1996) · Zbl 0871.17024 [8] Berman, S.; Moody, R. V., Lie Algebras graded by finite root systems and the intersection matrix algebras of Slodowy, Invent. Math., 108, 2, 323-347 (1992) · Zbl 0778.17018 [9] Bermudez, H.; Garibaldi, S.; Larsen, V., Linear preservers and representations with a 1-dimensional ring of invariants, Trans. Amer. Math. Soc., 366, 9, 4755-4780 (2014) · Zbl 1296.15012 [10] Boelaert, L.; De Medts, T., A new construction of Moufang quadrangles of type \(E_6, E_7\) and \(E_8\), Trans. Amer. Math. Soc., 367, 5, 3447-3480 (2015) · Zbl 1360.51004 [11] Bourbaki, N., Lie Groups and Lie Algebras (2002), Springer-Verlag: Springer-Verlag Berlin, (Chapters 4-6) · Zbl 0983.17001 [12] Bourbaki, N., Lie Groups and Lie Algebras (2005), Springer-Verlag: Springer-Verlag Berlin, (Chapters 7-9) [13] Brown, R., Groups of type \(E_7\), J. Reine Angew. Math., 236, 79-102 (1969) · Zbl 0182.04703 [14] Cayley, A., On the theory of linear transformations, Cambridge Math. J., IV, 193-209 (1845), (= Coll. Math. Papers, vol. 1, pp. 80-94) [15] Deligne, P.; Gross, B., On the exceptional series, and its descendants, C. R. Math. Acad. Sci. Paris, 335, 11, 877-881 (2002) · Zbl 1017.22008 [16] Dynkin, E., Semisimple subalgebras of semisimple Lie algebras, Amer. Math. Soc. Transl. (2). Amer. Math. Soc. Transl. (2), Mat. Sb. N.S., 30, 72, 349-462 (1952), Russian original · Zbl 0048.01701 [17] Elduque, A., The magic square and symmetric compositions, Rev. Mat. Iberoamericana, 20, 2, 475-491 (2004) · Zbl 1106.17011 [18] Elduque, A., The magic square and symmetric compositions. II, Rev. Mat. Iberoamericana, 23, 1, 57-84 (2007) · Zbl 1145.17005 [19] Fernández López, A., (Jordan Structures in Lie Algebras. Jordan Structures in Lie Algebras, Math. Surveys and Monographs, no. 240 (2019), Amer. Math. Soc) · Zbl 1441.17001 [20] Freudenthal, H., Sur le groupe exceptionnel \(E_7\), Nederl. Akad. Wetensch. Proc. Ser. A., 56, 81-89 (1953), ; Indagationes Math. 15 · Zbl 0052.02404 [21] Garibaldi, S., Isotropic trialitarian algebraic groups, J. Algebra, 210, 385-418 (1998) · Zbl 0920.20037 [22] Garibaldi, S., Structurable algebras and groups of type \(E_6\) and \(E_7\), J. Algebra, 236, 2, 651-691 (2001) · Zbl 0988.17025 [23] Garibaldi, S., (Cohomological Invariants: Exceptional Groups and Spin Groups. Cohomological Invariants: Exceptional Groups and Spin Groups, Memoirs Amer. Math. Soc., no. 937 (2009), Amer. Math. Soc: Amer. Math. Soc Providence, RI), with an appendix by Detlev W. Hoffmann · Zbl 1191.11009 [24] Garibaldi, S.; Petrov, V.; Semenov, N., Shells of twisted flag varieties and the Rost invariant, Duke Math. J., 165, 2, 285-339 (2016) · Zbl 1344.14004 [25] Gross, B.; Wallach, N., On quaternionic discrete series representations, and their continuations, J. Reine Angew. Math., 481, 73-123 (1996) · Zbl 0857.22012 [26] Helenius, F., Freudenthal triple systems by root system methods, J. Algebra, 357, 116-137 (2012) · Zbl 1315.17007 [27] Igusa, J.-I., A classification of spinors up to dimension twelve, Amer. J. Math., 92, 997-1028 (1970) · Zbl 0217.36203 [28] Jacobson, N., Some groups of transformations defined by Jordan algebras. I, J. Reine Angew. Math., 201, 178-195 (1959), (= Coll. Math. Papers 63) · Zbl 0084.03601 [29] Jantzen, J., (Representations of Algebraic Groups. Representations of Algebraic Groups, Math. Surveys and Monographs, vol. 107 (2003), Amer. Math. Soc) · Zbl 1034.20041 [30] Knus, M.-A.; Merkurjev, A.; Rost, M.; Tignol, J.-P., (The Book of Involutions. The Book of Involutions, Colloquium Publications, vol. 44 (1998), Amer. Math. Soc.) · Zbl 0955.16001 [31] Krutelevich, S., Jordan Algebras, exceptional groups, and Bhargava composition, J. Algebra, 314, 2, 924-977 (2007) · Zbl 1163.17032 [32] Loos, O., (Jordan Pairs. Jordan Pairs, Lecture Notes in Mathematics, vol. 460 (1975), Springer-Verlag: Springer-Verlag Berlin) · Zbl 0301.17003 [33] Loos, O., On algebraic groups defined by Jordan pairs, Nagoya Math. J., 74, 23-66 (1979) · Zbl 0424.17001 [34] Lurie, J., On simply laced Lie algebras and their minuscule representations, Comment. Math. Helv., 76, 515-575 (2001) · Zbl 1017.17011 [35] Meyberg, K., Eine Theorie der Freudenthalschen Tripelsysteme. I, II, Nederl. Akad. Wetensch. Proc. Ser. A, 71, 162-190 (1968), ; Indag. Math. 30 · Zbl 0261.17002 [36] Neher, E., Lie Algebras graded by \(3\)-graded root systems and Jordan pairs covered by grids, Amer. J. Math., 118, 2, 439-491 (1996), URL https://www.jstor.org/stable/25098473 · Zbl 0857.17019 [37] Pfister, A., Quadratische Formen in beliebigen Körpern, Invent. Math., 1, 116-132 (1966) · Zbl 0142.27203 [38] Quéguiner-Mathieu, A.; Tignol, J.-P., Decomposability of orthogonal involutions in degree 12, Pacific J. Math., 304, 1, 169-180 (2020) · Zbl 1452.11040 [39] Richardson, R.; Röhrle, G.; Steinberg, R., Parabolic subgroups with Abelian unipotent radical, Invent. Math., 110, 649-671 (1992) · Zbl 0786.20029 [40] Röhrle, G., On extraspecial parabolic subgroups, (Linear Algebraic Groups and their Representations. Linear Algebraic Groups and their Representations, Los Angeles, CA, 1992. Linear Algebraic Groups and their Representations. Linear Algebraic Groups and their Representations, Los Angeles, CA, 1992, Contemp. Math., vol. 153 (1993), Amer. Math. Soc: Amer. Math. Soc Providence, RI), 143-155 · Zbl 0832.20071 [41] Sato, M.; Kimura, T., A classification of irreducible prehomogeneous vector spaces and their relative invariants, Nagoya Math. J., 65, 1-155 (1977) · Zbl 0321.14030 [42] Selbach, M., (Klassifikationstheorie halbeinfacher algebraischer Gruppen. Klassifikationstheorie halbeinfacher algebraischer Gruppen, Bonner Mathematische Schriften, no. 83 (1976), Mathematisches Institut der Universität Bonn, Bonn), published version of 1973 Diplomarbeit · Zbl 0392.20025 [43] Springer, T., Characterization of a class of cubic forms, Nederl. Akad. Wetensch., 65, 259-265 (1962) · Zbl 0108.03302 [44] Springer, T., (Jordan Algebras and Algebraic Groups. Jordan Algebras and Algebraic Groups, Ergebnisse der Mathematik und ihrer Grenzgebiete, vol. 75 (1973), Springer-Verlag) · Zbl 0259.17003 [45] Springer, T., Linear Algebraic Groups (1998), Birkhäuser · Zbl 0927.20024 [46] Springer, T., Some groups of type \(E_7\), Nagoya Math. J., 182, 259-284 (2006) · Zbl 1160.20044 [47] Springer, T.; Veldkamp, F., Octonions, Jordan Algebras and Exceptional Groups (2000), Springer-Verlag: Springer-Verlag Berlin · Zbl 1087.17001 [48] Tits, J., Représentations linéaires irréductibles d’un groupe réductif sur un corps quelconque, J. Reine Angew. Math., 247, 196-220 (1971) · Zbl 0227.20015 [49] Tits, J., Strongly inner anisotropic forms of simple algebraic groups, J. Algebra, 131, 648-677 (1990) · Zbl 0697.20029 [50] Vinberg, E., Non-abelian gradings of Lie algebras, (50th Seminar Sophus Lie. 50th Seminar Sophus Lie, Banach Center Publications, vol. 113 (2017), Polish Academy of Sciences), 19-38 · Zbl 1390.17020 [51] Weyman, J.; Zelevinsky, A., Singularities of hyperdeterminants, Ann. Inst. Fourier (Grenoble), 46, 3, 591-644 (1996) · Zbl 0853.14001 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.