×

A frictional contact problem with adhesion for viscoelastic materials with long memory. (English) Zbl 1538.49013

Summary: We consider a quasistatic contact problem between a viscoelastic material with long-term memory and a foundation. The contact is modelled with a normal compliance condition, a version of Coulomb’s law of dry friction and a bonding field which describes the adhesion effect. We derive a variational formulation of the mechanical problem and, under a smallness assumption, we establish an existence theorem of a weak solution including a regularity result. The proof is based on the time-discretization method, the Banach fixed point theorem and arguments of lower semicontinuity, compactness and monotonicity.

MSC:

49J40 Variational inequalities
74H20 Existence of solutions of dynamical problems in solid mechanics
74A55 Theories of friction (tribology)
74D05 Linear constitutive equations for materials with memory
74F25 Chemical and reactive effects in solid mechanics
Full Text: DOI

References:

[1] Andersson, L.-E., A quasistatic frictional problem with normal compliance, Nonlinear Anal., Theory Methods Appl. 16 (1991), 347-369 · Zbl 0722.73061 · doi:10.1016/0362-546X(91)90035-Y
[2] Brezis, H., Functional Analysis, Sobolev Spaces and Partial Differential Equations, Universitext. Springer, New York (2011) · Zbl 1220.46002 · doi:10.1007/978-0-387-70914-7
[3] Chau, O.; Goeleven, D.; Oujja, R., Solvability of a nonclamped frictional contact problem with adhesion, Essays in Mathematics and Its Applications Springer, Cham (2016), 71-87 · Zbl 1405.35207 · doi:10.1007/978-3-319-31338-2_4
[4] Chau, O.; Shillor, M.; Sofonea, M., Dynamic frictionless contact with adhesion, Z. Angew. Math. Phys. 55 (2004), 32-47 · Zbl 1064.74132 · doi:10.1007/s00033-003-1089-9
[5] Chen, X., Modelling and Predicting Textile Behaviour, Elsevier, Amsterdam (2009) · doi:10.1533/9781845697211
[6] Drozdov, A. D., Finite Elasticity and Viscoelasticity: A Course in the Nonlinear Mechanics of Solids, World Scientific, Singapore (1996) · Zbl 0839.73001 · doi:10.1142/2905
[7] Duvaut, G.; Lions, J.-L., Inequalities in Mechanics and Physics, Grundlehren der mathematischen Wissenschaften 219. Springer, Berlin (1976) · Zbl 0331.35002
[8] Emmrich, E., Discrete versions of Gronwall’s lemma and their application to the numerical analysis of parabolic problems, Preprint Series of the Institute of Mathematics Technische Universität Berlin (1999), Preprint 637-1999, 37 pages
[9] Frémond, M., Adhérence des solides, J. Méc. Théor. Appl. 6 (1987), 383-407 French · Zbl 0645.73046
[10] Frémond, M., Non-Smooth Thermomechanics, Springer, Berlin (2002) · Zbl 0990.80001 · doi:10.1007/978-3-662-04800-9
[11] Gasiński, L.; Papageorgiou, N. S., Nonlinear Analysis, Series in Mathematical Analysis and Applications 9. Chapman & Hall/CRC, Boca Raton (2006) · Zbl 1086.47001 · doi:10.1201/9781420035049
[12] Han, W.; Sofonea, M., Quasistatic Contact Problems in Viscoelasticity and Viscoplasticity, AMS/IP Studies in Advanced Mathematics 30. American Mathematical Society, Providence (2002) · Zbl 1013.74001 · doi:10.1090/amsip/030
[13] Kasri, A.; Touzaline, A., Analysis and numerical approximation of a frictional contact problem with adhesion, Rev. Roum. Math. Pures Appl. 62 (2017), 477-503 · Zbl 1399.74025
[14] Kasri, A.; Touzaline, A., A quasistatic frictional contact problem for viscoelastic materials with long memory, Georgian Math. J. 27 (2020), 249-264 · Zbl 1440.49010 · doi:10.1515/gmj-2018-0002
[15] Klarbring, A.; Mikelić, A.; Shillor, M., Frictional contact problems with normal compliance, Int. J. Eng. Sci. 26 (1988), 811-832 · Zbl 0662.73079 · doi:10.1016/0020-7225(88)90032-8
[16] Migórski, S.; Ochal, A.; Sofonea, M., Analysis of frictional contact problem for viscoelastic materials with long memory, Discrete Contin. Dyn. Syst., Ser. B 15 (2011), 687-705 · Zbl 1287.74026 · doi:10.3934/dcdsb.2011.15.687
[17] Nečas, J.; Hlaváček, I., Mathematical Theory of Elastic and Elasto-Plastic Bodies: An Introduction, Studies in Applied Mechanics 3. Elsevier, Amsterdam (1981) · Zbl 0448.73009 · doi:10.1016/c2009-0-12554-0
[18] Panagiotopoulos, P. D., Inequality Problems in Mechanics and Applications: Convex and Nonconvex Energy Functions, Birkhäuser, Boston (1985) · Zbl 0579.73014 · doi:10.1007/978-1-4612-5152-1
[19] Raous, M.; Cangémi, L.; Cocu, M., A consistent model coupling adhesion, friction, and unilateral contact, Comput. Methods Appl. Mech. Eng. 177 (1999), 383-399 · Zbl 0949.74008 · doi:10.1016/S0045-7825(98)00389-2
[20] Shillor, M.; Sofonea, M.; Telega, J. J., Models and Analysis of Quasistatic Contact: Variational Methods, Lecture Notes in Physics 655. Springer, Berlin (2004) · Zbl 1069.74001 · doi:10.1007/b99799
[21] Sofonea, M.; Han, W.; Shillor, M., Analysis and Approximation of Contact Problems with Adhesion or Damage, Pure and Applied Mathematics (Boca Raton) 276. Chapman &Hall/CRC Press, Boca Raton (2006) · Zbl 1089.74004 · doi:10.1201/9781420034837
[22] Sofonea, M.; Matei, A., Variational Inequalities with Applications: A Study of Antiplane Frictional Contact Problems, Advances in Mechanics and Mathematics 18. Springer, New York (2009) · Zbl 1195.49002 · doi:10.1007/978-0-387-87460-9
[23] Sofonea, M.; Rodríguez-Arós, A. D.; Viaño, J. M., A class of integro-differential variational inequalities with applications to viscoelastic contact, Math. Comput. Modelling 41 (2005), 1355-1369 · Zbl 1080.47052 · doi:10.1016/j.mcm.2004.01.011
[24] Touzaline, A., A quasistatic frictional contact problem with adhesion for nonlinear elastic materials, Electron. J. Differ. Equ. 2008 (2008), Article ID 131, 17 pages · Zbl 1173.35709
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.