Parameter estimation of fire propagation models using level set methods. (English) Zbl 1481.49035

Summary: The availability of wildland fire propagation models with parameters estimated in an accurate way starting from measurements of fire fronts is crucial to predict the evolution of fire and allocate resources for firefighting. Thus, we propose an approach to estimate the parameters of a wildland fire propagation model combining an empirical rate of spread and level set methods to describe the evolution of the fire front over time and space. The estimation of parameters affecting the rate of spread is performed by using fire front shapes measured at different time instants as well as wind velocity and direction, landscape elevation, and vegetation distribution. Parameter estimation is done by solving an optimization problem, where the objective function to be minimized is the symmetric difference between predicted and measured fronts at different time instants. Numerical results obtained by the application of the proposed method are reported in two simulated scenarios and in a case study based on data originated by the 2002 Troy fire in Southern California. The obtained results showcase the effectiveness of the proposed approach both from qualitative and quantitative viewpoints.


49N45 Inverse problems in optimal control
65M32 Numerical methods for inverse problems for initial value and initial-boundary value problems involving PDEs
Full Text: DOI arXiv


[1] Hanson, H. P.; Bradley, M. M.; Bossert, J. E.; Linn, R. R.; Younker, L. W., The potential and promise of physics-based wildfire simulation, Environmental Science & Policy, 3, 4, 161-172 (2000)
[2] Rothermel, R., A mathematical model for predicting fire spread in wildland fuels, INT-115 (1972), Intermountain Forest & Range Experiment Station
[3] Burgan, R.; Rothermel, R., BEHAVE: Fire Behavior Prediction and Fuel Modeling System - FUEL Subsystem, Technical Report (1984), National Wildfire Coordinating Group
[4] Clark, T. L.; Jenkins, M. A.; Coen, J.; Packham, D., A coupled atmosphere-fire model: convective feedback on fire-line dynamics, J. Appl. Meteorol., 35, 6, 875-901 (1996)
[5] Mutlu, M.; Popescu, S.; Zhao, K., Sensitivity analysis of fire behavior modeling with LIDAR-derived surface fuel maps, For. Ecol. Manage., 256, 289-294 (2008)
[6] Karafyllidis, I.; Thanailakis, A., A model for predicting forest fire spreading using cellular automata, Ecol. Modell., 99, 1, 87-97 (1997)
[7] French, I. A.; Anderson, D. H.; Catchpole, E. A., Graphical simulation of bushfire spread, Math. Comput. Model., 13, 12, 67-71 (1990)
[8] Ghisu, T.; Arca, B.; Pellizzaro, G.; Duce, P., An improved cellular automata for wildfire spread, Procedia Comput. Sci., 51, 1, 2287-2296 (2015)
[9] Hernández Encinas, L.; Hoya White, S.; Martín del Rey, A.; Rodríguez Sánchez, G., Modelling forest fire spread using hexagonal cellular automata, Appl. Math. Model., 31, 6, 1213-1227 (2007) · Zbl 1146.37013
[10] Alexandridis, A.; Vakalis, D.; Siettos, C.; Bafas, G., A cellular automata model for forest fire spread prediction: the case of the wildfire that swept through Spetses Island in 1990, Appl. Math. Comput., 204, 191-201 (2008) · Zbl 1152.92023
[11] Tonini, M.; D’Andrea, M.; Biondi, G.; Esposti, S. D.; Trucchia, A.; Fiorucci, P., A machine learning-based approach for wildfire susceptibility mapping. the case study of the Liguria Region in Italy, Geosciences (Basel), 10, 1-18 (2020)
[12] Muñoz-Esparza, D.; Kosović, B.; Jiménez, P. A.; Coen, J. L., An accurate fire-spread algorithm in the weather research and forecasting model using the level-set method, J. Adv. Model. Earth Syst., 10, 4, 908-926 (2018)
[13] Mentrelli, A.; Pagnini, G., Modelling and simulation of wildland fire in the framework of the level set method, Ricerche di Matematica, 65, 523-533 (2016) · Zbl 1388.76434
[14] Mallet, V.; Keyes, D.; Fendell, F., Modeling wildland fire propagation with level set methods, Computers & Mathematics with Applications, 57, 7, 1089-1101 (2009) · Zbl 1186.65140
[15] Bova, A.; Mell, W.; Hoffman, C., A comparison of level set and marker methods for the simulation of wildland fire front propagation, International Journal of Wildland Fire, 25, 229-241 (2015)
[16] Kaur, I.; Mentrelli, A.; Bosseur, F.; Filippi, J.-B.; Pagnini, G., Turbulence and fire-spotting effects into wild-land fire simulators, Commun. Nonlinear Sci. Numer. Simul., 39, 300-320 (2016) · Zbl 1461.76367
[17] Sethian, J., Level set methods and fast marching methods, 3 (1999), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0929.65066
[18] Sethian, J.; Smereka, P., Level set methods for fluid interfaces, Annual Rev. Fluid Mechanics, 35, 1, 341-372 (2003) · Zbl 1041.76057
[19] Osher, S.; Fedkiw, R., Level set methods and dynamic implicit surfaces, Applied Mathematical Sciences, 153 (2003), Springer-Verlag: Springer-Verlag New York · Zbl 1026.76001
[20] Kimmel, R., Numerical geometry of images (2004), Springer-Verlag: Springer-Verlag New York
[21] Bernauer, M.; Herzog, R., Optimal control of the classical two-phase stefan problem in level set formulation, SIAM J. Sci. Comput., 33, 1, 342-363 (2011) · Zbl 1241.80013
[22] Yang, I.; Tomlin, C., Regularization-based identification for level set equations, Proc. IEEE Conf. on Decision and Control, 1058-1064 (2013)
[23] Alessandri, A.; Bagnerini, P.; Gaggero, M., Optimal control of propagating fronts by using level set methods and neural approximations, IEEE Trans. Neural Networks and Learning Systems, 30, 3, 902-912 (2019)
[24] Art.no. 1122
[25] Art. no. 108980
[26] Bertsekas, D. P., Nonlinear programming (2016), Athena Scientific · Zbl 1360.90236
[27] Lautenberger, C., Wildland fire modeling with an eulerian level set method and automated calibration, Fire Saf. J., 62, 289-298 (2013)
[28] Ambroz, M.; Mikula, K.; Frastia, M.; Marcis, M., Parameter estimation for the forest fire propagation model, Tatra Mt. Math. Publ., 72, 1-22 (2018) · Zbl 1475.35346
[29] Ervilha, A.; Pereira, J.; Pereira, J., On the parametric uncertainty quantification of the Rothermel’s rate of spread model, Appl. Math. Model, 41, 37-53 (2017) · Zbl 1443.76026
[30] Zhang, C.; Rochoux, M.; Tang, W.; Gollnera, M.; Filippi, J.-B.; Trouve, A., Evaluation of a data-driven wildland fire spread forecast model with spatially-distributed parameter estimation in simulations of the FireFlux I field-scale experiment, Fire Saf. J., 91, 758-767 (2017)
[31] Rochoux, M.; S, R.; Lucor, D.; Cuenot, B.; Trouve, A., Towards predictive data-driven simulations of wildfire spread - Part I: reduced-cost ensemble Kalman filter based on a polynomial chaos surrogate model for parameter estimation, Nat. Hazards Earth Syst. Sci., 14, 2951-2973 (2014)
[32] Mandel, J.; Bennethum, L.; Beezley, J.; Coen, J.; Douglas, C.; Kim, M.; Vodacek, A., A wildland fire model with data assimilation, Math. Comput. Simul., 79, 584-606 (2008) · Zbl 1155.80005
[33] Zhang, C.; Collin, A.; Moireau, P.; Trouve, A.; Rochoux, M., State-parameter estimation approach for data-driven wildland fire spread modeling: application to the 2012 RxCADRE S5 field-scale experiment, Fire Saf. J., 105, 286-299 (2019)
[34] Artes, T.; Cencerrado, A.; Cortes, A.; Margalef, T.; Rodriguez-Aseretto, D.; Petroliagkis, T.; San-Miguel-Ayanz, J., Towards a dynamic data driven wildfire behavior prediction system at european level, Procedia Comput. Sci., 29, 12161226 (2014)
[35] Denham, M.; Wendt, K.; Bianchini, G.; Cortes, A.; Margalef, T., Dynamic data-driven genetic algorithm for forest fire spread prediction, J. Comput. Sci., 3, 398404 (2012)
[36] Lo, S.-E., A fire simulation model for heterogeneous environments using the level set method (2012), Claremont Graduate University, Ph.D. thesis
[37] Zhai, C.; Zhang, S.; Cao, Z.; Wang, X., Learning-based prediction of wildfire spread with real-time rate of spread measurement, Combust. Flame, 215, 333-341 (2020)
[38] Hilton, J.; Miller, C.; Sullivan, A.; Rucinski, C., Effects of spatial and temporal variation in environmental conditions on simulation of wildfire spread, Environmental Modelling & Software, 67, 118-127 (2015)
[39] Hilton, J.; Miller, C.; Sharples, J.; Sullivan, A., Curvature effects in the dynamic propagation of wildfires, International Journal of Wildland Fire, 25, 1238-1251 (2016)
[40] Arroyo, L.; Pascual, C.; Manzanera, J., Fire models and methods to map fuel types: the role of remote sensing, For. Ecol. Manage., 256, 1239-1252 (2008)
[41] Mitchell, I. M., The flexible, extensible and efficient toolbox of level set methods, J. Sci. Comput., 35, 2-3, 300-329 (2008) · Zbl 1203.65295
[42] Huabsomboon, P., Implicit level set methods for a fire spread model, Proc. Asian Simulation and Modeling Conf., 127-133 (2007)
[43] Kim, E. H.; Yang, K.; Tran, M. N., Thermal-image-based wildfire spread simulation using a linearized model of an advection-diffusion-reaction equation, Simulation, 88, 9, 1093-1115 (2012)
[44] Pacific Southwest Research Station, The USDA Website Fire Science, 2007,
[45] U.S. Department of Agriculture Forest Service and U.S. Department of the Interior, LANDFIRE, landscape fire and resource management planning tools, 2019,
[46] Filippi, J.-B.; Mallet, V.; Nader, B., Evaluation of forest fire models on a large observation database, Nat. Hazards Earth Syst. Sci., 14, 3077-3091 (2014)
[47] Morvan, D., Validation of wildfire spread models, Encyclopedia of Wildfires and Wildland-Urban Interface (WUI) Fires, 1-6 (2019), Springer International Publishing: Springer International Publishing Cham
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.