×

Arithmetic intersection theory. (English) Zbl 0741.14012

The article constructs an intersection-product on the arithmetic Chow groups \(\widehat{Ch}\) of regular schemes over the integers of number- fields. These groups are quotients of pairs \((Z,g_ Z)\), \(Z\) a cycle and \(g_ Z\) a “Green’s current”, under rational equivalence. The main two difficulties are first to define the product of Green’s currents (which needs some regularity-considerations) and second an analytic version of Chow’s moving lemma. It should be noted that, as in the purely algebraic case, the theory becomes much simpler if one only attempts to intersect with Chern-classes of hermitian bundles (these have been defined earlier by the same authors).
Reviewer: G.Faltings

MSC:

14G40 Arithmetic varieties and schemes; Arakelov theory; heights
14C25 Algebraic cycles

References:

[1] J. Dieudonné andA. Grothendieck, Eléments de géométrie algébrique,Publ. Math. I.H.E.S.,20 (1964),24 (1965),28 (1966),32 (1967).
[2] S. J. Arakelov, Intersection theory of divisors on an arithmetic surface,Math. USSR Izvestija,8 (1974), 1167–1180. · Zbl 0355.14002 · doi:10.1070/IM1974v008n06ABEH002141
[3] S. J. Arakelov, Theory of intersections on an arithmetic surface,Proc. Int. Congr. of Mathematicians,1, Vancouver, 1975, 405–408. · Zbl 0351.14003
[4] P. Baum, W. Fulton andR. Macpherson, Riemann-Roch for singular varieties,Publ. Math. I.H.E.S.,45 (1975), 101–145. · Zbl 0332.14003
[5] A. A. Beilinson, Higher regulators and values of L-functions,J. Soviet Math.,30 (1985), 2036–2070. · Zbl 0588.14013 · doi:10.1007/BF02105861
[6] A. A. Beilinson, Height pairings between algebraic cycles,Contempory Math.,67 (1987), 1–24. · Zbl 0651.14002
[7] S. Bloch, Height pairings for algebraic cycles,in Proc. Luminy conference on algebraic K-theory (Luminy, 1983),J. Pure Appl. Algebra,34 (1984), 119–145. · Zbl 0577.14004 · doi:10.1016/0022-4049(84)90032-X
[8] S. Bloch, Algebraic K-theory and class-field theory for arithmetic surfaces,Ann. of Math.,114 (1981), 229–265. · Zbl 0512.14009 · doi:10.2307/1971294
[9] S. Bloch, Algebraic cycles and higher K-theory,Advances in Math.,61 (1986), 267–304. · Zbl 0608.14004 · doi:10.1016/0001-8708(86)90081-2
[10] J. M. Bismut, H. Gillet andC. Soulé,Complex immersions and Arakelov geometry, The Grothendieck Festschrift,1, Progress in Mathematics, Birkhauser, Boston, 1990, 249–331. · Zbl 0744.14015
[11] S. Bloch andP. Griffiths,A Theorem about normal functions associated to Lefschetz pencils on algebraic varieties, preprint, 1971.
[12] A. Borel andA. Haefliger, La classe d’homologie fondamentale d’un espace analytique,Bull. Soc. Math. France,89 (1961), 461–513. · Zbl 0102.38502
[13] A. Borel andJ. Moore, Homology theory for locally compact spaces,Michigan Math. J.,7 (1960), 137–159. · Zbl 0116.40301 · doi:10.1307/mmj/1028998385
[14] J. Cheeger, Multiplication of differential characters, Instituto Nazionale di Alta Mathematica,Symposia Mathematica,XI (1973), 441–445. · Zbl 0285.53014
[15] J. Cheeger andJ. Simons, Differential characters and geometric invariants, inGeometry and Topology, Lectures notes in Mathematics,1167, Berlin, Springer Verlag, 1980, 50–80.
[16] M. Cornalba andP. Griffiths, Analytic Cycles and Vector Bundles on Non-compact Algebraic Varieties,Inv. Math.,28 (1975), 1–106. · Zbl 0293.32026 · doi:10.1007/BF01389905
[17] P. Deligne, Théorie de Hodge II,Pub. Math. I.H.E.S.,40 (1972), 5–57.
[18] P. Deligne, Le déterminant de la cohomologie,Contemporary Mathematics,67 (1987), 93–178.
[19] P. Dolbeault, Formes différentielles et cohomologie sur une variété analytique complexe I,Ann. of Math.,64 (1956), 83–130. · Zbl 0072.40603 · doi:10.2307/1969950
[20] S. Eilenberg andN. Steenrod,Foundations of algebraic topology, Princeton Univ. Press, 1952. · Zbl 0047.41402
[21] G. Faltings, Calculus on arithmetic surfaces,Ann. of Math.,119 (1984), 387–424. · Zbl 0559.14005 · doi:10.2307/2007043
[22] W. Fulton,Intersection Theory, Ergebnisse der Mathematik und ihrer Grenzgebiete 3. Folge, Band 2, Berlin-Heidelberg, Springer Verlag, 1984. · Zbl 0541.14005
[23] H. Gillet, Riemann-Roch Theorems for higher algebraic K-theory,Advances in Math.,40 (1981), 203–289. · Zbl 0478.14010 · doi:10.1016/S0001-8708(81)80006-0
[24] H. Gillet, Some new Gysin homomorphisms for the Chow homology of varieties,Proc. L.M.S. (3),50 (1980), 57–68. · Zbl 0596.14003 · doi:10.1112/plms/s3-50.1.57
[25] H. Gillet, An introduction to higher dimensional Arakelov theory,Contemporary Math.,67 (1987), 209–228. · Zbl 0621.14004
[26] H. Gillet, K-theory and intersection theory revisited, K-theory,1 (1987), 407–415. · Zbl 0651.14001 · doi:10.1007/BF00539625
[27] H. Gillet andC. Soulé, Intersection sur les variétés d’Arakelov,C.R. Acad. Sci. Paris,299, Série I, 1984, 563–566. · Zbl 0607.14003
[28] H. Gillet andC. Soulé, Classes caractéristiques en théorie d’Arakelov,C.R. Acad. Sci. Paris,301, Série I, 1985, 439–442. · Zbl 0613.14007
[29] H. Gillet andC. Soulé, Intersection theory using Adams operations,Inv. Math.,90 (1987), 243–278. · Zbl 0632.14009 · doi:10.1007/BF01388705
[30] H. Gillet andC. Soulé, Characteristic classes for algebraic vector bundles with Hermitian metrics, I, II,Ann. of Math.,131 (1990), 163–203 and 205–238. · Zbl 0715.14018 · doi:10.2307/1971512
[31] H. Gillet andC. Soulé, Differential characters and arithmetic intersection theory, inAlgebraic K-Theory: Connections with Geometry and Topology (ed. byJ. F. Jardine andV. P. Snaith), NATO ASI, Series C,279, Kluwer Academic Publishers, 1989, 29–68.
[32] D. Grayson, The K-theory of hereditary categories,J. Pure Appl. Algebra,11 (1977), 67–74. · Zbl 0372.18004 · doi:10.1016/0022-4049(77)90041-X
[33] D. Grayson, Localization for flat modules in algebraic K-theory,J. Algebra,61 (1979), 463–496. · Zbl 0436.18010 · doi:10.1016/0021-8693(79)90290-4
[34] P. Griffiths andJ. Harris,Principles of algebraic geometry, John Wiley & Sons, 1978. · Zbl 0408.14001
[35] W. Greub, S. Halperin andR. Vanstone,Connections, curvature and cohomology,1, New York, Academic Press, 1972. · Zbl 0322.58001
[36] R. Hartshorne,Algebraic Geometry, Graduate Texts in Mathematics,52, New York, Springer Verlag, 1977.
[37] M. Herera andD. Lieberman, Duality and the deRham cohomology of infinitesimal neighborhoods,Inv. Math.,13 (1971), 97–124. · Zbl 0218.32005 · doi:10.1007/BF01390096
[38] H. Hironaka, Resolution of singularities of an algebraic variety over a field of characteristic zero,Ann. of Math.,79 (1964), 109–326. · Zbl 0122.38603 · doi:10.2307/1970486
[39] P. Hriljac, Heights and Arakelov’s Intersection Theory,Am. J. Math.,107 (1985), 23–38. · Zbl 0593.14004 · doi:10.2307/2374455
[40] M. Harris andD. H. Phong, Cohomologie de Dolbeault à croissance logarithmique à l’infini,C.R. Acad. Sci. Paris,302 (1986), 307–310. · Zbl 0597.32025
[41] J.-P. Jouanolou, Une suite exacte de Mayer-Vietoris en K-théorie algébrique, inAlgebraic K-theory I, Proceedings of the 1972 Battelle Institute Conference, Lecture Notes in Mathematics,341, Berlin, Springer Verlag, 1973, 293–316.
[42] J. King, The currents defined by algebraic varieties,Acta Math.,127 (1971), 185–220. · Zbl 0224.32008 · doi:10.1007/BF02392053
[43] J. King, Global residues and intersections on a complex manifold,Trans. Am. Math. Soc.,192 (1974), 163–199. · Zbl 0301.32005 · doi:10.1090/S0002-9947-1974-0338433-3
[44] J. King, Refined residues, Chern forms, and intersections, inValue distribution theory, Part A, New York, Dekker, 1974, 169–190.
[45] S. Kleiman, Motives, inAlgebraic Geometry, Oslo, 1970 (F. Oort, ed.), Wolters-Noordhoff, Groningen, 1972, 53–82.
[46] F. Knudsen andD. Mumford, The projectivity of the moduli space of stable curves I, preliminaries on ”det” and ”Div”,Math. Scand.,39 (1976), 19–55. · Zbl 0343.14008
[47] S. Lang,Differential Manifolds, New York, Springer Verlag, 1985.
[48] S. Lang,Algebraic Number Theory, Addison-Wesley (Reading), 1970. · Zbl 0211.38404
[49] P. Lelong, Intégration sur un ensemble analytique complexe,Bull. Soc. Math. France,95 (1957), 239–262. · Zbl 0079.30901
[50] D. Quillen, Higher Algebraic K-theory I, inAlgebraic K-theory I, Lecture Notes in Mathematics,341, Berlin, Springer Verlag, 1973, 85–147. · Zbl 0292.18004
[51] G. DeRham,Variétés différentiables: formes, courants, formes harmoniques, Paris, Hermann, 1960.
[52] J. Roberts, Chow’s moving lemma, inAlgebraic Geometry, Oslo, 1970 (F. Oort ed.), Wolters-Noordhoff, Groningen, 1972, 89–96.
[53] L. Schwartz,Théorie des distributions, nouvelle édition, Paris, Hermann, 1966. · Zbl 0149.09501
[54] J.-P. Serre,Algèbre locale, Multiplicités, 3rd ed., Lecture Notes in Mathematics,11, Berlin, Springer Verlag, 1975.
[55] B. V. Shabat,Distribution of values of holomorphic mappings, Translations of Mathematical Monographs,61, Am. Math. Soc. (Providence), 1985. · Zbl 0564.32016
[56] V. V. Shechtmann, Riemann-Roch’s theorem in Algebraic K-theory,Dep. Viniti, No. 2425-79 (1979).
[57] C. Soulé, Opérations en K-théorie algébrique,Canadian Journal of Math.,37 (1985), 488–550. · Zbl 0575.14015 · doi:10.4153/CJM-1985-029-x
[58] E. Spanier,Algebraic Topology, New York, McGraw-Hill, 1966. · Zbl 0145.43303
[59] L. Szpiro, Séminaire sur les pinceaux de courbes de genre au moins deux,Astérisque, no 86 (1981), Société Math. de France. · Zbl 0463.00009
[60] L. Szpiro, Présentation de la théorie d’Arakelov,Contemporary Math.,67 (1987), 279–293.
[61] J.-L. Verdier, Le théorème de Riemann-Roch pour les intersections complètes,Astérisque, no 36–37 (1976), 189–228.
[62] C. Weibel, Homotopy algebraic K-theory,Contemporary Mathematics,83 (1989), 461–488.
[63] A. Weil, Sur l’analogie entre les corps de nombres algébriques et les corps de fonctions algébriques, inCollected Papers,1, New York, Springer Verlag, 1980, 236–240.
[64] A. Weil, Letter to Simone Weil [1940a], inCollected Papers,1, New York, Springer Verlag, 1980, 244–255.
[65] R. O. Wells,Differential analysis on complex manifolds, Englewood Cliffs, N.J., Prentice Hall, 1973. · Zbl 0262.32005
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.