## Secant spaces and Clifford’s theorem.(English)Zbl 0741.14035

From the introduction: The following theorem A is basic for the results of this paper:
Any reduced irreducible non-degenerate and linearly normal curve $$C$$ of degree $$d\geq 4r-7$$ in $$\mathbb{P}^ r (r\geq 2)$$ has a $$(2r-3)$$-secant $$(r- 2)$$-plane.
This theorem is a special case of a more general theorem which we prove in the first part of this paper. By examples, we will show that the bound on the degree of $$C$$ seems to be the best possible bound only for $$r\leq 4$$. — In the second part we first use theorem A to clarify the relation between two invariants of a smooth, irreducible projective curve $$C$$ of genus $$g\geq 4$$: the gonality $$k$$ of $$C$$ and the Clifford index $$c$$ of $$C$$. In particular, we recover E. Ballico’s result [Proc. Am. Math. Soc. 97, 217-218 (1986; Zbl 0591.14020)] that every possible value of the Clifford index of a curve of given genus really occurs. — An application of theorem A is an improvement of Clifford’s classical theorem B (“refined Clifford”):
On a $$k$$-gonal curve $$C (k\geq 3)$$ of genus $$g$$ any $$g^ r_ d$$ of degree $$k-3\leq d\leq 2g-2-(k-3)$$ satisfies $$2r\leq d-(k-3)$$.
In part 3 of this paper we use theorem A to determine the maximal degree of all linear systems of degree $$d\leq g-1$$ on $$C$$ which compute the Clifford index $$c$$ of $$C$$ (we say that $$g^ r_ d$$ computes $$c$$ if $$d\leq g-1$$ and $$d-2r=c)$$. Our main result is theorem C:
Any $$g^ r_ d$$ $$(d\leq g-1)$$ on $$C$$ computing $$c$$ has degree $$d\leq 2(c+2)$$ unless $$C$$ is hyperelliptic or bi-elliptic.

### MSC:

 14N05 Projective techniques in algebraic geometry 14H45 Special algebraic curves and curves of low genus 14N10 Enumerative problems (combinatorial problems) in algebraic geometry 14C20 Divisors, linear systems, invertible sheaves

Zbl 0591.14020
Full Text:

### References:

 [1] Accola, R.D.M. : On Castelnuovo’s inequality for algebraic curves I , Trans. Amer. Math. Soc. 251 (1979), 357-373. · Zbl 0417.14021 [2] Arbarello, E. , Cornalba, M. : Footnotes to a paper of Beniamino Segre , Math. Ann. 256 (1981), 341-362. · Zbl 0454.14023 [3] Arbarello, E. , Cornalba, M. , Griffiths, P.A. , Harris, J. : Geometry of algebraic curves Vol. I, Grundlehren 267 (1985), Springer-Verlag. · Zbl 0559.14017 [4] Ballico, E. : On the Clifford index of algebraic curves , Proc. Amer. Math. Soc. 97 (1986), 217-218. · Zbl 0591.14020 [5] Bruce, J.W. , Wall, C.T.C. : On the classification of cubic surfaces , J. Lond. Math. Soc. 19 (1979), 245-256. · Zbl 0393.14007 [6] Clifford, W.K. : On the classification of loci, in: Mathematical Papers , Macmillan, London (1882). [7] Coppens, M. : Some sufficient conditions for the gonality of a smooth curve , J. Pure Appl. Algebra 30 (1983), 5-21. · Zbl 0537.14022 [8] Eisenbud, D. , Harris, J. : Curves in projective space . Les presses de’l Université de Montréal, Montréal 1982. · Zbl 0511.14014 [9] Eisenbud, D. , Lange, H. , Martens, G. , Schreyer, F.-O. : The Clifford dimension of a projective curve . Compositio Math. 72 (1989), 173-204. · Zbl 0703.14020 [10] Fulton, W. , Harris, J. , Lazarsfeld, R. : Excess linear series on an algebraic curve , Proc. Amer. Math. Soc. 92 (1984), 320-322. · Zbl 0549.14004 [11] Fulton, W. , Lazarsfeld, R. : On the connectedness of degeneracy loci and special divisors , Acta Math. 146 (1981), 271-283. · Zbl 0469.14018 [12] Hartshorne, R. : Algebraic Geometry , Graduate Texts in Math. 52 (1977), Springer-Verlag. · Zbl 0367.14001 [13] Keem, C. , Kim, S. : On the Clifford index of a general (e + 2)-gonal curve , Manuscripta Math. 63 (1989), 1-16. · Zbl 0679.14015 [14] Keem, C. , Kim, S. , Martens, G. : On a theorem of Farkas , J. reine angew. Math. 405 (1990), 112-116. · Zbl 0718.14020 [15] Kempf, G. : Schubert methods with an application to algebraic curves , Publ. of Math. Centrum, Amsterdam (1972). · Zbl 0223.14018 [16] Kleiman, S. , Laksov, D. : On the existence of special divisors , Amer. J. Math. 94 (1972), 431-436. · Zbl 0251.14005 [17] Kleiman, S. , Laksov, D. : Another proof of the existence of special divisors , Acta Math. 132 (1974), 163-176. · Zbl 0286.14005 [18] Lange, H. : Moduli spaces of algebraic curves with rational maps , Math. Proc. Camb. Phil. Soc. 78 (1975), 283-292. · Zbl 0307.14015 [19] Martens, G. : Funktionen von vorgegebener Ordnung auf komplexen Kurven , J. reine angew. Math. 320 (1980), 83-90. · Zbl 0441.14010 [20] Martens, G. , Schreyer, F.O. : Line bundles and syzygies of trigonal curves , Abh. Math. Sem. Univ. Hamburg 56 (1986), 169-189. · Zbl 0628.14029 [21] Martens, G. : On curves on K3 surfaces . In: Ballico, E., Ciliberto, C. (eds.): Algebraic curves and projective geometry, Proceedings , 1988, Lecture Notes in Math. 1389 (1989), Springer-Verlag. · Zbl 0698.14036 [22] Martens, H.H. : On the varieties of special divisors on a curve, II , J. reine angew. Math. 233 (1968), 89-100. · Zbl 0221.14004 [23] Paranjape, K. : Existence of curves with given Clifford index , Preprint. [24] Segre, B. : Sui moduli delle curve poligonali e sopra un complemento al teorema di existenza di Riemann , Math. Ann. 100 (1928), 537-551. · JFM 54.0685.01 [25] Stichtenoth, H. : Die Ungleichung von Castelnuovo , J. reine angew. Math. 348 (1984), 197-202. · Zbl 0516.14021
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.