Günaydin, M.; Scalise, R. J. Unitary lowest weight representations of the noncompact supergroup \(OSp(2m^*/2n)\). (English) Zbl 0741.22016 J. Math. Phys. 32, No. 3, 599-606 (1991). Unitary lowest weight representations of noncompact Lie superalgebras and supergroups seem to play an important role in supersymmetry theories. The oscillator construction for such irreducible representations is given, for the Lie supergroup \(Osp(2m^*/2n)\), with even subgroup \(SO^*(2m)\times USp(2n)\). Decomposition rules to the even subgroup are given, and considered in more detail for the examples \(Osp(4^*/2)\) and \(Osp(4^*/6)\). Reviewer: J.Van der Jeugt (Gent) Cited in 11 Documents MSC: 22E70 Applications of Lie groups to the sciences; explicit representations 17A70 Superalgebras Keywords:oscillator representation; noncompact supergroups; unitary lowest weight representations; noncompact Lie superalgebras; supersymmetry; irreducible representations; Lie supergroup; decomposition rules PDF BibTeX XML Cite \textit{M. Günaydin} and \textit{R. J. Scalise}, J. Math. Phys. 32, No. 3, 599--606 (1991; Zbl 0741.22016) Full Text: DOI OpenURL References: [1] DOI: 10.1016/0370-2693(82)91170-4 [2] DOI: 10.1016/0370-2693(82)91170-4 [3] DOI: 10.1007/BF01206048 · Zbl 0531.17002 [4] DOI: 10.1016/0550-3213(85)90129-4 [5] DOI: 10.1016/0550-3213(86)90342-1 [6] DOI: 10.1088/0264-9381/2/2/001 [7] DOI: 10.1016/0550-3213(86)90293-2 [8] DOI: 10.1088/0264-9381/2/1/003 [9] DOI: 10.1088/0264-9381/2/1/003 [10] DOI: 10.1016/0370-2693(78)90894-8 · Zbl 1156.83327 [11] DOI: 10.1063/1.528120 · Zbl 0681.22018 [12] DOI: 10.1063/1.527920 · Zbl 0655.17009 [13] DOI: 10.1016/0001-8708(77)90017-2 · Zbl 0366.17012 [14] DOI: 10.1016/0550-3213(89)90421-5 [15] DOI: 10.1063/1.525508 · Zbl 0488.22040 [16] DOI: 10.1063/1.525508 · Zbl 0488.22040 [17] DOI: 10.1063/1.525508 · Zbl 0488.22040 [18] DOI: 10.1063/1.525508 · Zbl 0488.22040 [19] DOI: 10.1063/1.525508 · Zbl 0488.22040 [20] DOI: 10.1016/0550-3213(84)90164-0 · Zbl 1223.81116 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.