×

Enclosure statements for systems of semilinear parabolic differential equations. (Einschliessungsaussagen bei Systemen semilinearer parabolischer Differentialgleichungen.) (German) Zbl 0741.35028

The author considers semilinear parabolic differential equations of the form \[ Mu(x,t)=u_ t(x,t)+{\mathcal L}[u](x,t)+f(x,t,u(x,t),u_ x(x,t)),\quad ((x,t)\in \Omega_ 0\times (0,t]), \] where \({\mathcal L}\) is a second order linear differential operator containing only derivatives with respect to \(x\in \Omega_ 0\subset \mathbb{R}^ m\). If \(v\) is a solution of \(M v=0\) satisfying certain initial and boundary conditions, estimates of the range of \(v\) of the form \[ v(x,t)\in\psi(x,t)G,\quad ((x,t)\in G\times [0,T]) \] are derived where \(G\) is a suitable subset of \(\mathbb{R}^ n\).
In case \(f\) only depends on \(u\), and the Dirichlet boundary condition \(u(x,t)=u_ s\) holds for \((x,t)\in \partial\Omega_ 0\times (0,\infty)\), \(u_ s\) is called a stationary point with respect to \(f\) if \(f(u_ s)=0\). In this case, stability and asymptotic stability are investigated. This means, if \(u(\cdot,0)\) is close to \(u_ s\), remains \(u(\cdot,t)\) close to \(u_ s\) for all \(t\geq 0\), or does \(u(\cdot,t)\to u_ s\) holds as \(t\to \infty\), respectively?
The general results are applied to a model of a biochemical reaction and a model for the nerve membrane.

MSC:

35K60 Nonlinear initial, boundary and initial-boundary value problems for linear parabolic equations
35B35 Stability in context of PDEs
92C20 Neural biology
92C40 Biochemistry, molecular biology
35K15 Initial value problems for second-order parabolic equations
35K20 Initial-boundary value problems for second-order parabolic equations
PDFBibTeX XMLCite
Full Text: DOI EuDML

References:

[1] E. Abrahams T. Tsuneto: Time variation of the Ginzberg-Landau order parameter. Phys. Rev. 152 (1968), 416-432.
[2] N. Alikakos: Remarks on invariance in reaction-diffusion equations. Nonlinear Analysis 5 (1981), 593-614. · Zbl 0463.35044 · doi:10.1016/0362-546X(81)90077-8
[3] H. Amann: Invariant sets and existence theorems for semilinear parabolic and elliptic systems. J. Math. Anal. App. 65 (1978), 432-467. · Zbl 0387.35038 · doi:10.1016/0022-247X(78)90192-0
[4] N. R. Amundson: Nonlinear problems in chemical reactor theory. SIAM-AMS Proc. 8 (1974), 59-84. · Zbl 0314.76066
[5] J. W. Bebernes K. Schmitt: Invariant sets and the Hukuhara-Kneser property for systems of parabolic partial differential equations. Rocky Mountain J. Math. 7 (1977), 575-567. · Zbl 0377.35035 · doi:10.1216/RMJ-1977-7-3-557
[6] J. A. Boa: Multiple steady states in a model biochemical reaction. Studies in appl. Math. 54 (1975), 9-15. · Zbl 0314.92005
[7] R. G. Casten C. J. Holland: Stability properties of solutions to systems of reaction-diffusion equations. SIAM J. Appl. Math. 33 (1977), 353-364. · Zbl 0372.35044 · doi:10.1137/0133023
[8] E. Conway D. Hoff J. Smoller: Large time behaviour of solutions of systems of nonlinear reaction-diffusion equations. SIAM J. Appl. Math. 35 (1978), 1-16. · Zbl 0383.35035 · doi:10.1137/0135001
[9] R. Courant K. O. Friedrichs: Supersonic flow and shock waves. Interscience Publishers, Inc., New York, 1948. · Zbl 0041.11302
[10] R. Courant D. Hilbert: Methods of mathematical physics. Vol. I. Interscience Publishers, Inc. New York, 1953. · Zbl 0051.28802
[11] K. N. Chueh C. C. Conley J. A. Smoller: Positively invariant regions for systems of nonlinear diffusion equations. Indiana Univ. Math. J. 26 (1977), 373-392. · Zbl 0368.35040 · doi:10.1512/iumj.1977.26.26029
[12] R. Fitzhugh: Impulses and physiological states in theoretical models of nerve membran. Biophys. J. 1 (1961), 445-466. · doi:10.1016/S0006-3495(61)86902-6
[13] G. R. Gavalas: Nonlinear differential equations of chemically reacting systems. Springer, New York, 1968. · Zbl 0174.13401
[14] C. Georgakis R. L. San: On the stability of the steady state in systems of coupled diffusion and reaction. Arch. Rat. Mech. Anal. 52 (1973), 266-296. · Zbl 0298.35009 · doi:10.1007/BF00247738
[15] A. L. Hodgkin A. F. Huxley: A quantitative description of membran current and its application to conduction and excitation in nerves. J. Physiol. 117 (1952), 500-544. · doi:10.1113/jphysiol.1952.sp004764
[16] W. E. Kastenberg: On the asymptotic stability of non-linear distributed parameter energy systems. Internat. J. Control 19 (1974), 73 - 79. · Zbl 0275.93039 · doi:10.1080/00207177408932612
[17] R. Lemmert: Über die Invarianz einer konvexen Menge in bezug auf Systemen gewöhnlichen, parabolischen und elliptischen Differentialgleichungen. Math. Ann. 230 (1977), 43-56. · Zbl 0364.35022 · doi:10.1007/BF01420575
[18] R. Lemmert: Über die Invarianz konvexer Mengen eines normierten Raumes in bezug auf elliptische Differentialgleichungen. Comm. Partial Differential Equations 3 (1978), 297-318. · Zbl 0389.35004 · doi:10.1080/03605307808820066
[19] R. R. Martin, Jr.: Nonlinear perturbations of uncoupled systems of elliptic operators. Math. Ann. 211 (1974), 155-169. · Zbl 0297.35027 · doi:10.1007/BF01344170
[20] J. Nagumo S. Arimoto S. Yoshizawa: Am active pulse transmission line simulating nerve axon. Proc. IRE 50 (1964), 2061 - 2070.
[21] J. Rauch J. A. Smoller: Qualitative theory of the Fitzhugh-Nagumo equations. Advances in Math. 27 (1978), 12-44. · Zbl 0379.92002 · doi:10.1016/0001-8708(78)90075-0
[22] R. Redheffer W. Walter: Invariant sets for systems of partial differential equations. I. parabolic equations. Arch. Rat. Mech. Anal. 67 (1978), 41 - 52. · Zbl 0377.35038 · doi:10.1007/BF00280826
[23] R. Redheffer W. Walter: Invariant sets for systems of partial differential equations, II. First-order and elliptic equations. Arch. Rat. Mech. Anal. 73 (1980), 19-29. · Zbl 0466.35014 · doi:10.1007/BF00283253
[24] D. H. Sattinger: Stability of nonlinear parabolic systems. J. Math. Anal. and Appl. 24 (1968), 241-245. · Zbl 0192.45002 · doi:10.1016/0022-247X(68)90025-5
[25] C. Schazfer: Invariant sets and contractions for weakly coupled systems of parabolic differential equations. Rendiconti di Mathematica 13 (1980), 337-357.
[26] K. Schmitt: Boundary value problems for quasilinear second order elliptic equations. Nonlinear Anal. 2 (1978), 263-309. · Zbl 0378.35022 · doi:10.1016/0362-546X(78)90019-6
[27] J. Schröder: Snaps-invariant bounds and more general estimates for vector-valued elliptic-parabolic problems. J. of Diff. Equ. 45 (1982), 431-460. · Zbl 0487.35033 · doi:10.1016/0022-0396(82)90037-7
[28] J. Schröder: Operator inequalities. Academic Press, New York, 1980. · Zbl 0455.65039
[29] H. Triebel: Höhere Analysis. VEB Dsutscher Verlag der Wissenschaften, Berlin, 1972. · Zbl 0257.47001
[30] V. S. Vladimirov: Equations of mathematical physics. Marcel Dekker, Inc., New York, 1971. · Zbl 0231.35002
[31] W. Walter: Differential and integral inequalities. Ergebnisse der Mathematik und ihrer Grenzgebiete 55. Springer, Berlin, Heidelberg, New York, 1970. · Zbl 0252.35005
[32] G. N. Watson: A treatise on the theory of Bessel functions. Cambridge at the University Press, 1958.
[33] H. F. Weinberger: Invariants sets for weakly coupled parabolic and elliptic systems. Rendiconti di Mathematica 8, Serie VI (1975), 295-310. · Zbl 0312.35043
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.