Hopf-von Neumann algebra bicrossproducts, Kac algebra bicrossproducts, and the classical Yang-Baxter equations. (English) Zbl 0741.46033

From the text: “The idea of semidirect products of operator algebras by group actions has proven a very fruitful one for generating new examples.”
“Two groups \(G_ 1\), \(G_ 2\) are said to be a matched pair if each acts on the space of the other and these actions, \((\alpha,\beta)\) say, obey a certain compatibility condition. For every matched pair of locally compact groups \((G_ 1,G_ 2,\alpha,\beta)\) we construct an associated coinvolutive Hopf-von Neumann algebra \({\mathcal M}(G_ 1)^ \beta\bowtie_ \alpha L^ \infty(G_ 2)\) by simultaneous cross product and cross coproduct. For non-trivial \(\alpha\), \(\beta\) these bicrossproduct Hopf-von Neumann algebras are non-commutative and non- cocommutative. If the modules for the actions \(\alpha\), \(\beta\) are also matched then these bicrossproducts are Kac algebras. In this case we show that the dual Kac algebra is of the same form with the roles of \(G_ 1\), \(G_ 2\) and \(\alpha\), \(\beta\) interchanged. Examples exist with \(G_ 1\) a simply connected Lie group and choices of \(G_ 2\) determined by suitable solutions of the classical Yang-Baxter equations on the complexification of the Lie algebra of \(G_ 1\).”.


46L55 Noncommutative dynamical systems
46L87 Noncommutative differential geometry
47L50 Dual spaces of operator algebras
Full Text: DOI


[1] Bratteli, O.; Robinson, D. W., (Operator Algebras and Quantum Statistical Mechanics, Vol. II (1979), Springer-Verlag: Springer-Verlag New York/Berlin) · Zbl 0421.46048
[2] DeCanniere, J., Semidirect products of Kac algebras, Bull. Soc. Math. France, 107, 337-372 (1979)
[3] Enock, M.; Schwartz, J.-M, Une dualité dans les algèbres de von Neumann, Bull. Soc. Math. France Mémoire, 44, 144 (1975) · Zbl 0343.46044
[4] Schwartz, J.-M, Sur la structure des algèbres de Kac, I, J. Funct. Anal., 34, 370-406 (1979) · Zbl 0431.46044
[5] Schwartz, J.-M, Sur la structure des algèbres de Kac, II, (Proc. London Math. Soc. (3), 41 (1980)), 465-480
[6] Jimbo, M., Quantum \(R\) matrix related to the generalized Toda system: An algebraic approach, (Springer Lecture Notes in Physics, Vol. 246 (1985), Springer-Verlag: Springer-Verlag New York/Berlin)
[7] Kac, G. I.; Paljutkin, V. G., Finite ring groups, Trans. Amer. Math. Soc., 15, 251-294 (1966)
[8] Lu, J.-H; Weinstein, A., Poisson Lie groups, dressing transformations and Bruhat decompositions, J. Diff. Geom., 31, 501-526 (1990) · Zbl 0673.58018
[9] Mackey, G. W., Products of subgroups and projective multipliers, (Colloquia Mathematical Societatis János Bolyai, Vol. 5 (1970), Hilbert Space Operators: Hilbert Space Operators Tihany, Hungary) · Zbl 0251.22005
[10] Majid, S., Hopf algebras for physics at the Planck scale, J. Classical Quantum Gravity, 5, 1587-1606 (1988) · Zbl 0672.16009
[11] Majid, S., Physics for algebraists: non-commutative and non-cocommutative Hopf algebras by a bicrossproduct construction, J. Algebra, 141, 311-332 (1990) · Zbl 0694.16008
[12] Majid, S., Matched pairs of Lie groups associated to solutions of the classical Yang-Baxter equations, Pacific J. Math., 141, 17-64 (1990)
[13] Rousseau, R., The left Hilbert algebra associated to the semidirect product, (Proc. Cambridge Philos. Soc., 82 (1977)), 411-418 · Zbl 0368.46050
[14] Stratila, S., Modular Theory and Operator Algebras (1981), Abacus Press: Abacus Press Tunbridge Wells, England · Zbl 0504.46043
[15] Sweedler, M. E., Hopf Algebras (1969), Benjamin: Benjamin New York · Zbl 0194.32901
[16] Takeuchi, M., Matched pairs of groups and bismash products of Hopf algebras, Comm. Algebra, 9, 841-882 (1981) · Zbl 0456.16011
[17] Vallin, J.-M, \(C^∗ algèbres de Hopf et C^∗\) algèbres de Kac, (Proc. London Math. Soc. (3), 50 (1985)), 131-174 · Zbl 0577.46063
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.