×

zbMATH — the first resource for mathematics

On the coupled BEM and FEM for a nonlinear exterior Dirichlet problem in \(\mathbb{R}^ 2\). (English) Zbl 0741.65084
See the preview in Zbl 0727.65093.

MSC:
65N35 Spectral, collocation and related methods for boundary value problems involving PDEs
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
65N15 Error bounds for boundary value problems involving PDEs
65N12 Stability and convergence of numerical methods for boundary value problems involving PDEs
35J05 Laplace operator, Helmholtz equation (reduced wave equation), Poisson equation
35J65 Nonlinear boundary value problems for linear elliptic equations
PDF BibTeX XML Cite
Full Text: DOI EuDML
References:
[1] Berger, H. (1989): Convergent finite element formulations for transonic flows. Number. Math.56, 5, 425-447 · Zbl 0681.76066 · doi:10.1007/BF01396647
[2] Berger, H., Warnecke, G., Wendland, W.L. (1990): Finite elements for transonic potential flows. Numer. Methods Partial Differ. Equations6, 1, 17-42 · Zbl 0692.76061
[3] Brezis, H. (1968): Equations et Inequations Nonlinéaries dans les Espaces Vectorieles en Dualite. Ann. Inst. Fourier, Grenoble,18, 115-174
[4] Brezzi, F., and Johnson, C., (1979): On the coupling of boundary integral and finite element methods. Calcolo16, 189-201 · Zbl 0423.65056 · doi:10.1007/BF02575926
[5] Ciarlet, P. (1978): The Finite Element Method for Elliptic Problems. North Holland, Amsterdam · Zbl 0383.65058
[6] Colton, D., Kress, R. (1983): Integral Equation Methods in Scattering Theory. Wiley, New York · Zbl 0522.35001
[7] Costabel, M. (1987): Symmetric methods for the coupling of finite elements and boundary elements. In: C.A. Brebbia et al., ed., Boudary Elements IX, vol. 1. Springer, Berlin Heidelberg New York, pp. 411-420
[8] Costabel, M. (1988): Boundary integral operators on Lipschitz domains: Elementary results. SIAM J. Math. Anal.19, 613-626 · Zbl 0644.35037 · doi:10.1137/0519043
[9] Costabel, M., Stephan, E.P. (1988;1990): Coupling of finite element and boundary element methods for an elasto-plastic interface problem. Preprint, Georgia Institute of Technology; SIAM J. Numer. Anal.27, 5, 1212-1226 · Zbl 0725.73090
[10] Feistauer, M. (1986): Mathematical and numerical study of nonlinear problems in fluid mechanics. In: J. Vosmansky, M. Zlámal, eds., Proc. Conf. Equadiff 6, Brno 1985. Springer, Berlin Heidelberg New York, pp. 3-16
[11] Feistauer, M. (1986): On the finite element approximation of a cascade flow problem. Numer Math.50 655-684 · Zbl 0646.76085 · doi:10.1007/BF01398378
[12] Feistauer, M., Zenisek, A. (1987): Finite element solution of nonlinear elliptic problems. Numer. Math.50, 451-475 · Zbl 0637.65107 · doi:10.1007/BF01396664
[13] Feng, K. (1983): Finite element method and natural boundary reduction. In: Proc. Inter. Congress of Mathematics, Polish Academy of Sciences, Warsaw, pp. 1439-1453
[14] Gatica, G.N. (1989): On the Coupling of Boundary Integral and Finite Element Methods for Nonlinear Boundary Value Problems. Ph.D. Dissertation, University of Delaware · Zbl 0698.65070
[15] Gatica, G.N., Hsiao, G.C. (1989a): The coupling of boundary integral and finite element methods for a nonlinear exterior Dirichlet problem in the plane. Par I: The weak formulation and Galerkin approximations. Technical Report 89-2, Center for Mathematics of Waves, Department of Mathematical Sciences, University of Delaware · Zbl 0698.65070
[16] Gatica, G.N., Hsiao, G.C. (1989b): The coupling of boundary integral and finite element methods for a nonliear exterior Dirichlet problem in the plane, Part II: Asymptoticerror estimates. Technical Report 89-3, Center for Mathematics of Waves, Department of Mathematical Sciences, University of Delaware
[17] Gatica, G.N., Hsiao, G.C. (1989c): The coupling of boundary element and finite element methods for a nonlinear exterior boundary value problem. Zeitschrift fur Analysis und ihre Anwendungen (ZAA)8, 4, 377-387 · Zbl 0698.65070
[18] Gatica, G.N., Hsiao, G.C. (1990): On a class of variational formulations for some nonlinear interface problems. Rendiconti di Matematica e delle sue Applicazione10, 4, 681-715 · Zbl 0767.35019
[19] Gilbarg, D., Trudinger, N. (1983): Elliptic Partial Differential Equations of Second Order, 2nd ed. Springer, Berlin Heidelberg New York · Zbl 0562.35001
[20] Han, H. (1987/1990): A new class of variational formulations for the coupling of finite and boundary element methods. Preprint, University of Maryland, College Park; J. Comput. Math.8 3, 223-232
[21] Hsiao, G.C. (1986): On the stability of integral equations of the first kind with logarithmic kernels. Archive for Rational Mechanics and Analysis94, 2, 179-192 · Zbl 0606.65089 · doi:10.1007/BF00280433
[22] Hisao, G.C. (1989): The coupling of BEM and FEM-a brief review. In: C.A. Brebbia et al., eds., Boundary Elements X, vol. 1. Springer, Berlin Heidelberg New York, pp. 431-445
[23] Hsiao, G.C. (1989): On boundary integral equations of the first kind. J. Comput. Math.7, 2, 121-131 · Zbl 0672.65090
[24] Hsiao, G.C. (1990): The coupling of boundary element and finite element methods. A plenary lecture at the GAMM-Tagung 1989. Z. Angew. Math. Mech. (ZAMM)70, 6, 493-503 · Zbl 0732.73062
[25] Hsiao, G.C., Porter, J.F. (1986): A hybrid method for an exterior boundary value problem based on asympotic expansion boundary integral equation and finite element approximations. In: C.A. Brebbia et al., eds., Innovative Numerical Methods in Engineering, Springer, Berlin Heidelberg New York, pp. 83-88 · Zbl 0593.65065
[26] Hsiao, G.C., Roach, G.F. (1979): On the relationship between boundary value problems. J. Math. Anal. Appl.68, 557-566 · Zbl 0424.35034 · doi:10.1016/0022-247X(79)90136-7
[27] Hisao, G.C., Schnack, E., Wendland, W.L. (1991): Stability and convergence of hybrid stress methods. In preparation
[28] Hsiao, G.C., Wendland, W.L. (1977): A finite element method for some integral equations of the first kind. J. Math. Anal. Appl.58, 449-481 · Zbl 0352.45016 · doi:10.1016/0022-247X(77)90186-X
[29] Hsiao, G.C., Wendland, W.L. (1981): The Aubin-Nitsche lemma for integral equations. J. Integral Equations3, 299-315 · Zbl 0478.45004
[30] Johnson, C., Nedelec, J.C. (1980): On the coupling of boundary integral and finite element methods. Math. Comput.35, 1063-1079 · Zbl 0451.65083 · doi:10.1090/S0025-5718-1980-0583487-9
[31] Kohn, J.J., Nirenberg, L. (1965): An algebra of pseudodiferential operators. Comm. Pure Appl. Math.18, 269-305 · Zbl 0171.35101 · doi:10.1002/cpa.3160180121
[32] Kufner, A., John, O., Fucik, S. (1977): Function Spaces. Academia, Prague
[33] Leroux, M.N. (1977): Methode d’elements finis pour le resolution numérique de problémes extérieurs en dimension 2. RAIRO Anal. Number.11, 27-60
[34] MacCamy, R.C., Marin, S.P. (1980): A finite element method for exteior interface problems. Int. J. Math. Math. Sci.3, 311-350 · Zbl 0429.65108 · doi:10.1155/S0161171280000233
[35] Michlin, S.G. (1962): Variationsmethoden der Mathematischen Physik. Akademie-Verlag, Berlin · Zbl 0098.36909
[36] Michlin, S.G. (1970): Mathematical Physics: an Advanced Course. North Holland Amsterdam
[37] Michlin, S.G. (1978): Partielle Differentialgleichungen in der Mathematischen Physik. Akademie-Verlag, Berlin · Zbl 0397.35001
[38] Ne?as, J. (1967): Les Méthodes Directes en Théorie des Equations Elliptiques. Academia, Prague; Masson, Paris
[39] Ne?as, J. (1986): Introduction to the Theory of Nonlinear Elliptic Equations. Wiley, New York · Zbl 0643.35001
[40] Oden, J.T. (1986): Qualitative Methods in Nonlinear Mechanis. Prentice-Hall, Englewood Cliffs, NJ · Zbl 0578.70001
[41] Porter, J.F. (1986): On the Coupling of Boundary Integral and Finite Element Methods for a Class of Singular Perturbation Problems. Ph.D. Dissertation, University of Delaware
[42] Schnack, E. (1987): A hybrid BEM model. Internationla Journal for Numerical Methods in Engineering24, 5, 1015-1025 · Zbl 0611.73081 · doi:10.1002/nme.1620240512
[43] Vainberg, M.M. (1964): Variational Methods for the Study of Nonlinear Operators. Holden-Day, San Francisco, London Amsterdam
[44] Wendland, W.L. (1986): Variational Methods for the Study of Nonlinear Operators. Holden-Day, San Francisco, London Amsterdam · Zbl 0653.65082
[45] Wendland, W.L. (1986): On asymptotic error estimates for the combined BEM and FEM. In: R.P. Shaw et al., eds., Innovative Numerical Methods in Engineering, Springer, Berlin Heidelberg New York, pp. 55-70
[46] Wendland, W.L. (1988): On asymptotic error estimates for the combined BEM and FEM. In: E. Stein, W.L. Wendland eds., CISM Lecture Notes 301, Finite Element and Boundary Element Techniques from Mathematical and Engineering point of view. Udine, Springer, Wien New York pp. 273-333
[47] Zlamal, M. (1973): Curved elements in the finite element method. SIAM J. Numer. Anal.10, 229-240 · Zbl 0285.65067 · doi:10.1137/0710022
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.