×

Folded plates revisited. (English) Zbl 0741.73025

See the following review of the author’s article, ibid. 5, No. 6, 401-416 (1990; Zbl 0741.73026).

MSC:

74K20 Plates

Citations:

Zbl 0741.73026
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Adams, R. A. (1975): Sobolev spaces. New York: Academic Press · Zbl 0314.46030
[2] Aganovi?, I.; Tutek, Z. (1986): A justification of the one-dimensional model of elastic beam. Math. Meth. Appl. Sci. 8, 1-14 · Zbl 0617.35136
[3] Bermudez, A.; Viaño, J. M. (1984): Une justification des équations de la thermoélasticité des poutres à section variable par des méthodes asymptotiques. R.A.I.R.O. Analyse Numérique 18, 347-376 · Zbl 0572.73053
[4] Ciarlet, P. G.; Destuynder, P. (1979): A justification of a nonlinear model in plate theory. Comp. Meth. Appl. Mech. Engrg. 17/18, 227-258 · Zbl 0405.73050
[5] Ciarlet, P. G. (1980): A justification of the von Kármán equations. Arch. Rat. Mech. Anal. 73, 349-389 · Zbl 0443.73034
[6] Ciarlet, P. G. (1988 a): Mathematical elasticity, Vol. 1: Three-dimensional elasticity. Amsterdam: North Holland · Zbl 0648.73014
[7] Ciarlet, P. G. (1988 b): Junctions between plates and rods. (in preparation)
[8] Ciarlet, P. G.; Le Dret, H.; Nzengwa, R. (1987): Modélisation de la jonction entre un corps élastique tridimensionnel et une plaque. C.R. Acad. Sci. Paris t.305, Série I, 55-58 · Zbl 0632.73015
[9] Ciarlet, P. G.; Le Dret, H.; Nzengwa, R. (1988): Junctions between three-dimensional and two-dimensional linearly elastic structures. J. Maths. Pures Appl. (to appear) · Zbl 0661.73013
[10] Cimetière, A.; Geymonat, G.; Le Dret, H.; Raoult, A.; Tutek, Z. (1988): Asymptotic theory and analysis for displacements and stress distribution in nonlinear elastic straigth slender rods. J. Elasticity 19, 111-161 · Zbl 0653.73010
[11] Destuynder, P. (1986): Une théorie asymptotique des plaques minces en élasticité linéaire. Paris: R.M.A no.2 Masson
[12] Fichera, G. (1972): Existence theorems in elasticity. In Flügge, S. (ed.): Handbuch der Physik, VIa/2, 347-389, Berlin, Heidelberg, New York: Springer
[13] Le Dret, H. (1987a): Modélisation d’une plaque pliée. C. R. Acad. Sci. Paris t.304, Série I, 18, 571-573 · Zbl 0634.73047
[14] Le Dret, H. (1989): Modeling of a folded plate. Comput. Mech. 5 · Zbl 0741.73026
[15] Lions, J.-L.; Magenes, E. (1968 a): Problèmes aux limites non homogènes et applications. Vol. 1 Paris: Dunod · Zbl 0165.10801
[16] Lions, J.-L.; Magenes, E. (1968 b): Problèmes aux limites non homogènes et applications. Vol. 2 Paris: Dunod · Zbl 0165.10801
[17] Marsden, J. E.; Hughes, T. J. R. (1983): Mathematical foundations of elasticity. Englewood Cliffs: Prentice-Hall · Zbl 0545.73031
[18] Rigolot, A. (1976): Sur une théorie. asymptotique des poutres. Doctoral Dissertation, Université Paris 6
[19] Wang, C. C.; Truesdell, C. (1975): Introduction to rational elasticity. Groningen: Nordhoff · Zbl 0308.73001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.