Continuité et différentiabilité d’éléments propres: application à l’optimisation de structures. (Continuity and differentiability of eigen-elements: Application to the optimization of structures). (French) Zbl 0741.73029

The sensitivity analysis of static structural eigenvalue response with respect to design variation is presented in this important paper. The effect of design variation on buckling of a beam is considered. The buckling load of a structure (computed by an eigenvalue problem, the eigenvalue of the smallest absolute value) is described by a linear, elliptic eigenvalue problem. In optimizing structures with a constraint on the buckling load, repeated eigenvalues are likely to occur.
The main results are: The work brings some new ideas in the proof of continuity and differentiability results of eigen-elements with respect to design variables (by using the variational characterization of eigenvalues). Finally the authors illustrate these results by a classical problem: buckling of a beam.


74P99 Optimization problems in solid mechanics
74M05 Control, switches and devices (“smart materials”) in solid mechanics
49Q12 Sensitivity analysis for optimization problems on manifolds
49R50 Variational methods for eigenvalues of operators (MSC2000)
74K10 Rods (beams, columns, shafts, arches, rings, etc.)
74S30 Other numerical methods in solid mechanics (MSC2010)
74P10 Optimization of other properties in solid mechanics
Full Text: DOI


[1] Brezis H (1983) Analyse fonctionnelle. Th?orie et applications. Masson, Paris · Zbl 0511.46001
[2] Chenais D, Rousselet B (? para?tre) Dependence of the buckling load of a nonshallow arch with respect to the shape of its midcurve · Zbl 0708.73033
[3] Dieudonne JA (1968) El?ments d’analyse, tomes I et II. Gauthiers-Villars, Paris
[4] Dunford N, Schwartz J. (1963) Linear Operators, tome II. Interscience, New York · Zbl 0128.34803
[5] Germain P (1986) Cours de M?canique de l’Ecole Polytechnique. Ellipses, Paris
[6] Girsanov IV (1972) Lectures on Mathematical Theory of Extremum problems. Springer Verlag, Berlin · Zbl 0234.49016
[7] Haug EJ, Rousselet B (1980) Design sensitivity analysis in structural mechanics II: Eigenvalue variations. J Structural Mech 8:161-186
[8] Ioffe AD, Tihomirov VM (1979) Theory of Extremal Problems. North-Holland, Amsterdam
[9] Joseph DD (1977) Parameter and domain dependence of eigenvalues of elliptic partial differential equations. Arch Rational Mech Anal 35:169-177
[10] Kato T (1966) Perturbation Theory for Linear Operators. Springer-Verlag, Berlin · Zbl 0148.12601
[11] Lions JL, Magenes E. (1968) Probl?mes aux limites non homog?nes et applications, tome 1 et 2. Dunod, Paris
[12] Masur EF (1984) Optimal structural design under multiple eigenvalue constraints. Internat J Solids and Structures 20:211-231 · Zbl 0544.73117 · doi:10.1016/0020-7683(84)90034-9
[13] Olhoff N, Rasmussen SH (1977) On single and bimodal buckling modes of clamped columns. Internat J Solids and Structures 13:605-614 · Zbl 0357.73041 · doi:10.1016/0020-7683(77)90043-9
[14] Rousselet B (1976) Etude de la r?gularit? des valeurs propres par rapport ? des d?formations bilipschitziennes du domaine. C R Acad Sci Paris S?r 1 Math 283:507 · Zbl 0355.65081
[15] Rousselet B (1978) Optimal design and eigenvalue problems. In: Stoer J (ed) Optimization Techniques. Springer-Verlag, Berlin, pp 343-352
[16] Rousselet B (1982) Quelques r?sultats en optimisation de domains. Th?se d’?tat, Universit? de Nice
[17] Rousselet B (1983) Shape design sensitivity of a membrane, J. Optim Theory Appl 40:595-623 · Zbl 0497.73097 · doi:10.1007/BF00933973
[18] Rousselet B, Haug EJ (1982) Design sensitivity analysis in structural mechanics III; effects of shape variations for plate and plane elasticity. J Structural Mech 10:273-310
[19] Rudin W (1978) Functional Analysis. Tata McGraw-Hill, Bombay · Zbl 0867.46001
[20] Sokolowski J, Myslinsky A (1985) Non-differentiable optimization problems for elliptic systems. SIAM J Control Optim 23:632-648 · Zbl 0571.49010 · doi:10.1137/0323040
[21] Zolesio JP (1981) Semi-derivatives of repeated eigenvalues. In: Haug EJ, C?a J (eds) Optimization of Distributed Parameter Structures. Sijthoff and Nordhoff, Aphen an den Rijn, pp 1457-1473
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.