A reduced basis method for a PDE-constrained optimization formulation in discrete fracture network flow simulations. (English) Zbl 07411568

Summary: In classic Reduced Basis (RB) framework, we propose a new technique for the offline greedy error analysis which relies on a residual-based a posteriori error estimator. This approach is as an alternative to classical a posteriori RB estimators, avoiding a discrete inf-sup lower bound estimate. We try to use less common ingredients of the RB framework to retrieve a better approximation of the RB error, such as the estimation of the distance between the continuous solution and the reduced one. In particular we focus on the application of the reduction model for the flow simulations in underground fractured media, in which high accurate simulations suffer for the complexity of the domain geometry. Finally, some numerical tests are assessed to confirm the viability and the efficacy of the technique proposed.


76-XX Fluid mechanics
65-XX Numerical analysis


redbKIT; SIDNUR; dfnWorks
Full Text: DOI


[1] Hesthaven, J. S.; Rozza, G.; Stamm, B., Certified Reduced Basis Methods for Parametrized Partial Differential Equations (2016), Springer · Zbl 1329.65203
[2] Hain, S.; Ohlberger Radic, M.; Urban, K., A hierarchical a posteriori error estimator for the reduced basis method, Adv. Comput. Math., 45, 5, 1572-9044 (2019)
[3] Ali, M.; Steih, K.; Urban, K., Reduced basis methods with adaptive snapshot computations, Adv. Comput. Math., 43, 2, 257-294 (2017) · Zbl 1379.65087
[4] Hyman, J. D.; Gable, C. W.; Painter, S. L.; Makedonska, N., Conforming Delaunay triangulation of stochastically generated three dimensional discrete fracture networks: a feature rejection algorithm for meshing strategy, SIAM J. Sci. Comput., 36, 4, A1871-A1894 (2014) · Zbl 1305.74082
[5] Hyman, J.; Karra, S.; Makedonska, N.; Gable, C.; Painter, S.; Viswanathan, H., dfnworks: a discrete fracture network framework for modeling subsurface flow and transport, Comput. Geosci., 84, 10-19 (2015)
[6] Mustapha, H.; Mustapha, K., A new approach to simulating flow in discrete fracture networks with an optimized mesh, SIAM J. Sci. Comput., 29, 4, 1439-1459 (2007) · Zbl 1251.76056
[7] Fumagalli, A.; Scotti, A., An efficient xfem approximation of Darcy flows in arbitrarily fractured porous media, Oil Gas Sci. Technol. - Rev. IFP Energies nouvelles, 69, 4, 555-564 (2014)
[8] Antonietti, P. F.; Formaggia, L.; Scotti, A.; Verani, M.; Verzott, N., Mimetic finite difference approximation of flows in fractured porous media, ESAIM: M2AN, 50, 3, 809-832 (2016) · Zbl 1381.76231
[9] Pichot, G.; Erhel, J.; de Dreuzy, J., A generalized mixed hybrid mortar method for solving flow in stochastic discrete fracture networks, SIAM J. Sci. Comput., 34, B86-B105 (2012) · Zbl 1387.65121
[10] Pichot, G.; Erhel, J.; de Dreuzy, J., A mortar bdd method for solving flow in stochastic discrete fracture networks, (Domain Decomposition Methods in Science and Engineering XXI, Vol. 98 (2014)), 99-112 · Zbl 1380.74112
[11] Berrone, S.; Pieraccini, S.; Scialò, S., A pde-constrained optimization formulation for discrete fracture network flows, SIAM J. Sci. Comput., 35, 2, 487-510 (2013)
[12] Girault, V.; Glowinski, R., Error analysis of a fictitious domain method applied to a Dirichlet problem, Jpn. J. Ind. Appl. Math., 487, 12, 317-338 (1995) · Zbl 0843.65076
[13] Berrone, S.; Borio, A., A residual a posteriori error estimate for the virtual element method, Math. Models Methods Appl. Sci., 27, 08, 1423-1458 (2017) · Zbl 1376.65136
[14] Berrone, S.; Scialò, S.; Borio, A., A posteriori error estimate for a PDE-constrained optimization formulation for the flow in DFNs, SIAM J. Numer. Anal., 54, 1, 242-261 (2016) · Zbl 1382.76159
[15] Rozza, G.; Huynh, D. B.P.; Patera, A., Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations, Arch. Comput. Methods Eng., 229, 15 (2008), 1886-1784 · Zbl 1304.65251
[16] Quarteroni, A.; Manzoni, A.; Negri, F., Reduced Basis Methods for Partial Differential Equations An Introduction (2016), Springer · Zbl 1337.65113
[17] Manzoni, A.; Negri, Heuristic strategies for the approximation of stability factors in quadratically nonlinear parametrized pdes, Adv. Comput. Math., 41, 5, 1572-9044 (2015)
[18] Huynh, D.; Rozza, G.; Sen, S.; Patera, A., A successive constraint linear optimization method for lower bounds of parametric coercivity and inf-sup stability constants, C. R. Math., 345, 8, 473-478 (2007) · Zbl 1127.65086
[19] Yano, M., A reduced basis method with exact-solution certificates for symmetric coercive equations, Comput. Methods Appl. Mech. Eng., 287, 290-309 (2015) · Zbl 1423.74937
[20] Verfürth, R., A posteriori error estimation and adaptive mesh-refinement techniques, J. Comput. Appl. Math., 50, 1, 67-83 (1994) · Zbl 0811.65089
[21] Berrone, S.; Borio, A.; Vicini, F., Reliable a posteriori mesh adaptivity in discrete fracture network flow simulations, Comput. Methods Appl. Mech. Eng., 354, 904-931 (2019) · Zbl 1441.76053
[22] Berrone, S.; Pieraccini, S.; Scialò, S., An optimization approach for large scale simulations of discrete fracture network flows, J. Comput. Phys., 256, 838-853 (2014) · Zbl 1349.76806
[23] Berrone, S.; Pieraccini, S.; Scialò, S., Non-stationary transport phenomena in networks of fractures: effective simulations and stochastic analysis, Comput. Methods Appl. Mech. Eng., 315, 1098-1112 (2017) · Zbl 1439.65147
[24] Berrone, S.; Scialò, S.; Vicini, F., Parallel meshing, discretization, and computation of flow in massive discrete fracture networks, SIAM J. Sci. Comput., 41, 4, C317-C338 (2019) · Zbl 1433.65277
[25] Berrone, S.; Pieraccini, S.; Scialò, S., Flow simulations in porous media with immersed intersecting fractures, J. Comput. Phys., 345, 768-791 (2017) · Zbl 1378.76107
[26] Cacas, M. C.; Ledoux, E.; De Marsily, G.; Tillie, B.; Barbreau, A.; Durand, E.; Feuga, B.; Peaudecerf, P., Modeling fracture flow with a stochastic discrete fracture network: calibration and validation: 1. The flow model, Water Resour. Res., 26, 479-489 (1990)
[27] Loeve, M., Probability Theory I (1977), Springer · Zbl 0359.60001
[28] Berrone, S.; Pieraccini, S.; Scialò, S.; Canuto, C., Uncertainty quantification in discrete fracture network models: stochastic fracture transmissivity, Comput. Math. Appl., 70, 4, 603-623 (2015) · Zbl 1443.76210
[29] Dedè, L., Reduced basis method and a posteriori error estimation for parametrized linear-quadratic optimal control problems, SIAM J. Sci. Comput., 32, 2, 997-1019 (2010) · Zbl 1221.35030
[30] Negri, F.; Rozza, G.; Manzoni, A.; Quarteroni, A., Reduced basis method for parametrized elliptic optimal control problems, SIAM J. Sci. Comput., 35, 5, A2316-A2340 (2013) · Zbl 1280.49046
[31] Berrone, S.; Pieraccini, S.; Scialò, S., Towards effective flow simulations in realistic discrete fracture networks, J. Comput. Phys., 310, 181-201 (2016) · Zbl 1349.76179
[32] Kenneth, L. J.; Lilia, M.; Serguei, M.; Rafael, V., Smolyak method for solving dynamic economic models: Lagrange interpolation, anisotropic grid and adaptive domain, J. Econ. Dyn. Control, 44, 92-123 (2014) · Zbl 1402.91368
[33] Svensk Kärnbränslehantering AB, Data report for the safety assessment sr-site (2010), tech. Rep. TR-10-52, Stockholm, Sweden
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.