×

Chronos: a general purpose classical AMG solver for high performance computing. (English) Zbl 1487.65032


MSC:

65F08 Preconditioners for iterative methods
65F10 Iterative numerical methods for linear systems
65F50 Computational methods for sparse matrices
65N55 Multigrid methods; domain decomposition for boundary value problems involving PDEs
65Y05 Parallel numerical computation
68W10 Parallel algorithms in computer science

Software:

Chronos
PDF BibTeX XML Cite
Full Text: DOI arXiv

References:

[1] F. P. Ali Beik and M. Benzi, Iterative methods for double saddle point systems, SIAM J. Matrix Anal. Appl., 39 (2018), pp. 902-921, https://doi.org/10.1137/17M1121226. · Zbl 1391.65062
[2] P. R. Amestoy, A. Buttari, J.-Y. L’Excellent, and T. Mary, Performance and scalability of the block low-rank multifrontal factorization on multicore architectures, ACM Trans. Math. Software, 45 (2019), 2. · Zbl 1471.65025
[3] S. Badia, A. F. Martín, and J. Principe, Multilevel balancing domain decomposition at extreme scales, SIAM J. Sci. Comput., 38 (2016), pp. C22-C52, https://doi.org/10.1137/15M1013511. · Zbl 1334.65217
[4] R. Baggio, A. Franceschini, N. Spiezia, and C. Janna, Rigid body modes deflation of the preconditioned conjugate gradient in the solution of discretized structural problems, Computers & Structures, 185 (2017), pp. 15-26, https://doi.org/10.1016/j.compstruc.2017.03.003.
[5] A. H. Baker, T. V. Kolev, and U. M. Yang, Improving algebraic multigrid interpolation operators for linear elasticity problems, Numer. Linear Algebra Appl., 17 (2009), pp. 495-517. · Zbl 1240.74027
[6] S. Balay, S. Abhyankar, M. F. Adams, J. Brown, P. Brune, K. Buschelman, L. Dalcin, A. Dener, V. Eijkhout, W. D. Gropp, D. Karpeyev, D. Kaushik, M. G. Knepley, D. A. May, L. C. McInnes, R. T. Mills, T. Munson, K. Rupp, P. Sanan, B. F. Smith, S. Zampini, H. Zhang, and H. Zhang, PETSc web page, https://www.mcs.anl.gov/petsc, 2019.
[7] A. Bienz, R. D. Falgout, W. Gropp, L. N. Olson, and J. B. Schroder, Reducing parallel communication in algebraic multigrid through sparsification, SIAM J. Sci. Comput., 38 (2016), pp. S332-S357, https://doi.org/10.1137/15M1026341. · Zbl 1352.65102
[8] A. Brandt, J. Brannick, K. Kahl, and I. Livshits, Bootstrap AMG, SIAM J. Sci. Comput., 33 (2011), pp. 612-632, https://doi.org/10.1137/090752973.
[9] J. Brannick, F. Cao, K. Kahl, R. Falgout, and X. Hu, Optimal interpolation and compatible relaxation in classical algebraic multigrid, SIAM J. Sci. Comput., 40 (2018), pp. A1473-A1493, https://doi.org/10.1137/17M1123456. · Zbl 1448.65258
[10] M. Brezina, R. Falgout, S. MacLachlan, T. Manteuffel, S. McCormick, and J. Ruge, Adaptive smoothed aggregation \(( \alpha\) SA) multigrid, SIAM Rev., 47 (2005), pp. 317-346, https://doi.org/10.1137/050626272. · Zbl 1075.65042
[11] M. Brezina, R. Falgout, S. MacLachlan, T. Manteuffel, S. McCormick, and J. Ruge, Adaptive algebraic multigrid, SIAM J. Sci. Comput., 27 (2006), pp. 1261-1286, https://doi.org/10.1137/040614402. · Zbl 1100.65025
[12] M. Brezina, C. Tong, and R. Becker, Parallel algebraic multigrids for structural mechanics, SIAM J. Sci. Comput., 27 (2006), pp. 1534-1554, https://doi.org/10.1137/040608271. · Zbl 1097.74061
[13] H. De Sterck, R. D. Falgout, J. W. Nolting, and U. M. Yang, Distance-two interpolation for parallel algebraic multigrid, Numer. Linear Algebra Appl., 15 (2008), pp. 115-139. · Zbl 1212.65139
[14] H. De Sterck, U. M. Yang, and J. J. Heys, Reducing complexity in parallel algebraic multigrid preconditioners, SIAM J. Matrix Anal. Appl., 27 (2006), pp. 1019-1039, https://doi.org/10.1137/040615729. · Zbl 1102.65034
[15] R. D. Falgout and J. B. Schroder, Non-Galerkin coarse grids for algebraic multigrid, SIAM J. Sci. Comput., 36 (2014), pp. C309-C334, https://doi.org/10.1137/130931539. · Zbl 1297.65035
[16] R. D. Falgout and U. M. Yang, hypre: A library of high performance preconditioners, in Proceedings of the International Conference on Computational Science-Part III, ICCS ’02, Springer-Verlag, Berlin, Heidelberg, 2002, pp. 632-641, https://doi.org/10.1007/3-540-47789-6_66. · Zbl 1056.65046
[17] M. Ferronato, A. Franceschini, C. Janna, N. Castelletto, and H. A. Tchelepi, A general preconditioning framework for coupled multiphysics problems with application to contact- and poro-mechanics, J. Comput. Phys., 398 (2019), 108887. · Zbl 1453.65065
[18] A. Franceschini, V. A. Paludetto Magri, G. Mazzucco, N. Spiezia, and C. Janna, A robust adaptive algebraic multigrid linear solver for structural mechanics, Comput. Methods Appl. Mech. Engrg., 352 (2019), pp. 389-416. · Zbl 1441.74302
[19] M. Frigo, N. Castelletto, and M. Ferronato, A relaxed physical factorization preconditioner for mixed finite element coupled poromechanics , SIAM J. Sci. Comput., 41 (2019), pp. B694-B720, https://doi.org/10.1137/18M120645X. · Zbl 1420.65032
[20] M. Frigo, G. Isotton, and C. Janna, Chronos web page, https://www.m3eweb.it/chronos, 2021.
[21] M. Frigo, G. Isotton, C. Janna, N. Spiezia, and O. Tosatto, ATLAS web page, https://www.m3eweb.it/atlas, 2021.
[22] A. Frommer, K. Kahl, F. Knechtli, M. Rottmann, A. Strebel, and I. Zwaan, A multigrid accelerated eigensolver for the Hermitian Wilson-Dirac operator in lattice QCD, Comput. Phys. Commun., 258 (2021), 107615.
[23] S. A. Goreinov, I. V. Oseledets, D. V. Savostyanov, E. E. Tyrtyshnikov, and N. L. Zamarashkin, How to find a good submatrix, in Matrix Methods: Theory, Algorithms and Applications, World Scientific, Hackensack, NJ, 2010, pp. 247-256. · Zbl 1215.65078
[24] V. E. Henson and U. M. Yang, BoomerAMG: A parallel algebraic multigrid solver and preconditioner, Appl. Numer. Math., 41 (2002), pp. 155-177, https://doi.org/10.1016/S0168-9274(01)00115-5. · Zbl 0995.65128
[25] G. Isotton, C. Janna, and M. Bernaschi, A GPU-accelerated adaptive FSAI preconditioner for massively parallel simulations, Internat. J. High Performance Comput. Appl., (2021), https://doi.org/10.1177/10943420211017188.
[26] C. Janna, M. Ferronato, and G. Gambolati, The use of supernodes in factored sparse approximate inverse preconditioning, SIAM J. Sci. Comput., 37 (2015), pp. C72-C94, https://doi.org/10.1137/140956026. · Zbl 1327.65062
[27] C. Janna, M. Ferronato, F. Sartoretto, and G. Gambolati, FSAIPACK: A software package for high-performance factored sparse approximate inverse preconditioning, ACM Trans. Math. Software, 41 (2015), 10, https://doi.org/10.1145/2629475. · Zbl 1369.65052
[28] D. E. Knuth, Semioptimal bases for linear dependencies, Linear Multilinear Algebra, 17 (1985), pp. 1-4. · Zbl 0556.15001
[29] S. Koric and A. Gupta, Sparse matrix factorization in the implicit finite element method on petascale architecture, Comput. Methods Appl. Mech. Engrg., 302 (2016), pp. 281-292. · Zbl 1425.65062
[30] S. Koric, Q. Lu, and E. Guleryuz, Evaluation of massively parallel linear sparse solvers on unstructured finite element meshes, Computers & Structures, 141 (2014), pp. 19-25, https://doi.org/10.1016/j.compstruc.2014.05.009.
[31] B. Lee, Algebraic multigrid for systems of elliptic boundary-value problems, Numer. Linear Algebra Appl., 17 (2020), pp. 495-21.
[32] O. E. Livne and A. Brandt, Lean algebraic multigrid (LAMG): Fast graph Laplacian linear solver, SIAM J. Sci. Comput., 34 (2012), pp. B499-B522, https://doi.org/10.1137/110843563. · Zbl 1253.65045
[33] V. A. Paludetto Magri, A. Franceschini, and C. Janna, A novel algebraic multigrid approach based on adaptive smoothing and prolongation for ill-conditioned systems, SIAM J. Sci. Comput., 41 (2019), pp. A190-A219, https://doi.org/10.1137/17M1161178. · Zbl 1433.65069
[34] F.-H. Rouet, C. Ashcraft, J. Dawson, R. Grimes, E. Guleryuz, S. Koric, R. F. Lucas, J. S. Ong, T. A. Simons, and T.-T. Zhu, Scalability challenges of an industrial implicit Finite Element code, in Proceedings of the 2020 IEEE International Parallel and Distributed Processing Symposium (IPDPS), IEEE, Washington, DC, 2020, pp. 505-514.
[35] T. Roy, T. Jönsthövel, C. Lemon, and A. J. Wathen, A constrained pressure-temperature residual (CPTR) method for non-isothermal multiphase flow in porous media, SIAM J. Sci. Comput., 42 (2020), pp. B1014-B1040, https://doi.org/10.1137/19M1292023. · Zbl 1452.76101
[36] J. W. Ruge and K. Stüben, Algebraic multigrid, in Multigrid Methods, Frontiers Appl. Math. 3, SIAM, Philadelphia, 1987, pp. 73-130, https://doi.org/10.1137/1.9781611971057.ch4.
[37] Y. Saad and H. A. Van der Vorst, Iterative solution of linear systems in the 20th century, J. Comput. Appl. Math., 123 (2000), pp. 1-33. · Zbl 0965.65051
[38] K. Stüben, A review of algebraic multigrid, J. Comput. Appl. Math., 128 (2001), pp. 281-309, https://doi.org/10.1016/S0377-0427(00)00516-1. · Zbl 0979.65111
[39] E. Strohmaier, J. Dongarra, H. Simon, and M. Meuer, Top 500: The list of the 500 most powerful computer systems, 2020, https://www.top500.org.
[40] U. Trottenberg, C. Oosterlee, and A. Schüller, Multigrid, Academic Press, San Diego, CA, 2001.
[41] P. Vaněk, J. Mandel, and M. Brezina, Algebraic multigrid by smoothed aggregation for second and fourth order elliptic problems, Computing, 56 (1996), pp. 179-196, https://doi.org/10.1007/BF02238511. · Zbl 0851.65087
[42] M. Wathen and C. Greif, A scalable approximate inverse block preconditioner for an incompressible magnetohydrodynamics model problem, SIAM J. Sci. Comput., 42 (2020), pp. B57-B79, https://doi.org/10.1137/19M1255409. · Zbl 1428.76177
[43] J. Xu and L. Zikatanov, Algebraic multigrid methods, Acta Numer., 26 (2017), pp. 591-721, https://doi.org/10.1017/S0962492917000083. · Zbl 1378.65182
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.