×

Revealed preference in argumentation: algorithms and applications. (English) Zbl 07414871

Summary: Argumentative agents in AI are inspired by how humans reason by exchange of arguments. Given the same set of arguments possibly attacking one another (Dung’s AA framework) these agents are bound to accept the same subset of those arguments (aka extension) unless they reason by different argumentation semantics. However humans may not be so predictable, and in this paper we assume that this is because any real agent’s reasoning is inevitably influenced by her own preferences over the arguments. Though such preferences are usually unobservable, their effects on the agent’s reasoning cannot be washed out. Hence by reconstructing her reasoning process, we might uncover her hidden preferences, which then allow us to predict what else the agent must accept. Concretely we formalize and develop algorithms for such problems as uncovering the hidden argument preference relation of an agent from her expressed opinion, by which we mean a subset of arguments or attacks she accepted from a given AA framework; and uncovering the collective preferences of a group from a dataset of individual opinions. A major challenge we addressed in this endeavor is to deal with “answer sets” of argument preference relations which are generally exponential or even infinite. So we start by developing a compact representation for such answer sets called preference states. Preference revelation tasks are then structured as derivations of preference states from data, and reasoning prediction tasks are reduced to manipulations of derived preference states without enumerating the underlying (possibly infinite) answer sets. We also apply the presented results to two non-trivial problems: learning preferences over rules in structured argumentation with priorities – an open problem so far; and analyzing public polls in apparently deeper ways than existing social argumentation frameworks allow.

MSC:

68T37 Reasoning under uncertainty in the context of artificial intelligence

Software:

AFRA
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Baroni, P.; Giacomin, M., On principle-based evaluation of extension-based argumentation semantics, Artif. Intell., 171, 10-15, 675-700 (2007) · Zbl 1168.68559
[2] Bondarenko, A.; Dung, P.; Kowalski, R.; Toni, F., An abstract, argumentation-theoretic approach to default reasoning, Artif. Intell., 93, 1, 63-101 (1997) · Zbl 1017.03511
[3] Brewka, G., Reasoning about priorities in default logic, (Proceedings of the Twelfth National Conference on Artificial Intelligence, Vol. 2. Proceedings of the Twelfth National Conference on Artificial Intelligence, Vol. 2, AAAI’94 (1994), American Association for Artificial Intelligence: American Association for Artificial Intelligence USA), 940-945
[4] Brewka, G.; Eiter, T., Argumentation context systems: a framework for abstract group argumentation, (Erdem, E.; Lin, F.; Schaub, T., Logic Programming and Nonmonotonic Reasoning (2009), Springer: Springer Berlin, Heidelberg), 44-57 · Zbl 1258.68154
[5] Dung, P. M.; Kowalski, R. A.; Toni, F., Dialectic proof procedures for assumption-based, admissible argumentation, Artif. Intell., 170, 2, 114-159 (2006) · Zbl 1131.68103
[6] Dung, P. M.; Mancarella, P.; Toni, F., Computing ideal skeptical argumentation, Artif. Intell., 171, 10-15, 642-674 (2007) · Zbl 1168.68564
[7] Gabbay, D. M.; d’Avila Garcez, A. S., Logical modes of attack in argumentation networks, Stud. Log., 93, 2-3, 199-230 (2009) · Zbl 1185.68671
[8] García, A. J.; Simari, G. R., Defeasible logic programming: an argumentative approach, Theory Pract. Log. Program., 4, 2, 95-138 (2004), https://doi.org/10.1017/S1471068403001674 · Zbl 1090.68015
[9] Prakken, H.; Sartor, G., Argument-based extended logic programming with defeasible priorities, J. Appl. Non-Class. Log., 7, 1 (1977) · Zbl 0877.68019
[10] Dung, P. M., An axiomatic analysis of structured argumentation with priorities, Artif. Intell., 231, 107-150 (2016) · Zbl 1344.68220
[11] Dung, P. M.; Thang, P. M., Fundamental properties of attack relations in structured argumentation with priorities, Artif. Intell., 255, 1-42 (2018) · Zbl 1425.68391
[12] Dung, P. M., On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and n-person games, Artif. Intell., 77, 2, 321-357 (1995) · Zbl 1013.68556
[13] (2019), Wikipedia, the free encyclopedia, Brett Kavanaugh supreme court nomination, Online
[14] Amgoud, L.; Cayrol, C., A reasoning model based on the production of acceptable arguments, Ann. Math. Artif. Intell., 34, 1-3, 197-215 (2002) · Zbl 1002.68172
[15] Amgoud, L.; Cayrol, C.; Lagasquie-Schiex, M. C.; Livet, P., On bipolarity in argumentation frameworks, Int. J. Intell. Syst., 23, 10, 1062-1093 (2008) · Zbl 1151.68049
[16] Bench-Capon, T.; Atkinson, K., Abstract argumentation and values, (Argumentation in Artificial Intelligence (2009), Springer US), 45-64
[17] Bench-Capon, T., Persuasion in practical argument using value-based argumentation frameworks, J. Log. Comput., 13, 3, 429-448 (2003) · Zbl 1043.03026
[18] Modgil, S.; Prakken, H., A general account of argumentation with preferences, Artif. Intell., 195, 361-397 (2013) · Zbl 1270.68284
[19] Modgil, S.; Prakken, H., The ASPIC+ framework for structured argumentation: a tutorial, Argum. Comput., 5, 1, 31-62 (2014), https://doi.org/10.1080/19462166.2013.869766
[20] Amgoud, L., Postulates for logic-based argumentation systems, Int. J. Approx. Reason., 55, 9, 2028-2048 (2014), weighted Logics for Artificial Intelligence · Zbl 1433.68438
[21] Caminada, M.; Amgoud, L., On the evaluation of argumentation formalisms, Artif. Intell., 171, 5-6, 286-310 (2007) · Zbl 1168.68562
[22] Modgil, S., Reasoning about preferences in argumentation frameworks, Artif. Intell., 173, 9-10, 901-934 (2009) · Zbl 1192.68663
[23] Baroni, P.; Cerutti, F.; Giacomin, M.; Guida, G., Encompassing attacks to attacks in abstract argumentation frameworks, (Sossai, C.; Chemello, G., Symbolic and Quantitative Approaches to Reasoning with Uncertainty (2009), Springer: Springer Berlin, Heidelberg), 83-94 · Zbl 1203.68198
[24] Hanh, D. D.; Dung, P. M.; Hung, N. D.; Thang, P. M., Inductive defense for sceptical semantics of extended argumentation, J. Log. Comput., 21, 1, 307-349 (2010) · Zbl 1214.68383
[25] Brewka, G.; Woltran, S., Abstract dialectical frameworks, (Proceedings of the Twelfth International Conference on Principles of Knowledge Representation and Reasoning. Proceedings of the Twelfth International Conference on Principles of Knowledge Representation and Reasoning, KR’10 (2010), AAAI Press), 102-111
[26] (10 2018) [cited Jan. 22, 2019]
[27] Pigozzi, G.; Tsoukiàs, A.; Viappiani, P., Preferences in artificial intelligence, Ann. Math. Artif. Intell., 77, 3, 361-401 (2016) · Zbl 1371.68262
[28] Benferhat, S.; Dubois, D.; Prade, H., Argumentative inference in uncertain and inconsistent knowledge bases, (Heckerman, D.; Mamdani, A., Uncertainty in Artificial Intelligence (1993), Morgan Kaufmann), 411-419
[29] Mahesar, Q.-a.; Oren, N.; Vasconcelos, W. W., Computing preferences in abstract argumentation, (Miller, T.; Oren, N.; Sakurai, Y.; Noda, I.; Savarimuthu, B. T.R.; Cao Son, T., PRIMA 2018: Principles and Practice of Multi-Agent Systems (2018), Springer International Publishing: Springer International Publishing Cham), 387-402
[30] Kido, H.; Okamoto, K., A Bayesian approach to argument-based reasoning for attack estimation, (Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence. Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence, IJCAI-17 (2017)), 249-255
[31] Kido, H.; Liao, B., A Bayesian approach to direct and inverse abstract argumentation problems (2019), Preprint submitted to Artificial Intelligence
[32] Hung, N. D.; Huynh, V.-N., Learning individual and group preferences in abstract argumentation, (PRICAI 2019: Trends in Artificial Intelligence - 16th Pacific Rim International Conference on Artificial Intelligence (2019))
[33] Thang, P. M.; Dung, P. M.; Hung, N. D., Towards a common framework for dialectical proof procedures in abstract argumentation, J. Log. Comput., 19, 6 (2009) · Zbl 1185.68677
[34] Prakken, H., An argumentation-based analysis of the Simonshaven case, Top. Cogn. Sci., 12, 1068-1091 (2020)
[35] Cayrol, C.; Lagasquie-Schiex, M. C., On the acceptability of arguments in bipolar argumentation frameworks, (Godo, L., Symbolic and Quantitative Approaches to Reasoning with Uncertainty (2005), Springer: Springer Berlin, Heidelberg), 378-389 · Zbl 1122.68639
[36] Cohen, A.; Parsons, S.; Sklar, E. I.; McBurney, P., A characterization of types of support between structured arguments and their relationship with support in abstract argumentation, Int. J. Approx. Reason., 94, 76-104 (2018) · Zbl 1443.68175
[37] Amgoud, L.; Cayrol, C., Inferring from inconsistency in preference-based argumentation frameworks, J. Automat. Reason., 29, 2, 125-169 (2002) · Zbl 1056.68589
[38] Brewka, G., Preferred subtheories: an extended logical framework for default reasoning, (Proceedings of the 11th International Joint Conference on Artificial Intelligence - Volume 2. Proceedings of the 11th International Joint Conference on Artificial Intelligence - Volume 2, IJCAI’89 (1989), Morgan Kaufmann Publishers Inc.: Morgan Kaufmann Publishers Inc. San Francisco, CA, USA), 1043-1048 · Zbl 0713.68053
[39] Delgrande, J. P.; Schaub, T.; Tompits, H., A framework for compiling preferences in logic programs, Theory Pract. Log. Program., 3, 2, 129-187 (2003) · Zbl 1105.68323
[40] Schaub, T.; Wang, K., A comparative study of logic programs with preference, (Proceedings of the 17th International Joint Conference on Artificial Intelligence - Volume 1. Proceedings of the 17th International Joint Conference on Artificial Intelligence - Volume 1, IJCAI’01 (2001), Morgan Kaufmann Publishers Inc.: Morgan Kaufmann Publishers Inc. San Francisco, CA, USA), 597-602
[41] Brewka, G.; Eiter, T., Preferred answer sets for extended logic programs, Artif. Intell., 109, 1, 297-356 (1999) · Zbl 0916.68091
[42] Fenton, N.; Neil, M.; Yet, B.; Lagnado, D., Analyzing the Simonshaven case using Bayesian networks, Top. Cogn. Sci., 12, 1092-1114 (2020)
[43] Modgil, S.; Prakken, H., Resolutions in structured argumentation, (Computational Models of Argument. Computational Models of Argument, Frontiers in Artificial Intelligence and Applications, vol. 245 (2012)), 310-321
[44] Dung, P. M.; Thang, P. M., Towards (probabilistic) argumentation for jury-based dispute resolution, (Proceedings of the 2010 Conference on Computational Models of Argument: Proceedings of COMMA 2010 (2010), IOS Press, NLD), 171-182
[45] Leite, J.a.; Martins, J.a., Social abstract argumentation, (Proceedings of the Twenty-Second International Joint Conference on Artificial Intelligence - Volume Three. Proceedings of the Twenty-Second International Joint Conference on Artificial Intelligence - Volume Three, IJCAI’11 (2011), AAAI Press), 2287-2292
[46] Baroni, P.; Romano, M.; Toni, F.; Aurisicchio, M.; Bertanza, G., Automatic evaluation of design alternatives with quantitative argumentation, Argum. Comput., 6, 1, 24-49 (2015)
[47] Eğilmez, S.; Martins, J.; Leite, J., Extending social abstract argumentation with votes on attacks, (Black, E.; Modgil, S.; Oren, N., Theory and Applications of Formal Argumentation (2014), Springer: Springer Berlin, Heidelberg), 16-31 · Zbl 1405.68347
[48] Thimm, M., A probabilistic semantics for abstract argumentation, (Proceedings of the 20th European Conference on Artificial Intelligence. Proceedings of the 20th European Conference on Artificial Intelligence, ECAI’12 (2012), IOS Press: IOS Press NLD), 750-755 · Zbl 1327.68290
[49] Li, H.; Oren, N.; Norman, T., Probabilistic argumentation frameworks, (Theory and Applications of Formal Argumentation. Theory and Applications of Formal Argumentation, Lecture Notes in Computer Science, vol. 7132 (2012)), 1-16
[50] Hunter, A., A probabilistic approach to modelling uncertain logical arguments, Int. J. Approx. Reason., 54, 1, 47-81 (2013) · Zbl 1266.68176
[51] Gabbay, D. M.; Rodrigues, O., Probabilistic argumentation: an equational approach, Log. Univers., 9, 3, 345-382 (2015) · Zbl 1337.68241
[52] Amgoud, L.; Ben-Naim, J.; Doder, D.; Vesic, S., Acceptability semantics for weighted argumentation frameworks, (Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence. Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence, IJCAI-17 (2017)), 56-62
[53] Amgoud, L.; Bonzon, E.; Correia, M.; Cruz, J.; Delobelle, J.; Konieczny, S.; Leite, J.; Martin, A.; Maudet, N.; Vesic, S., A note on the uniqueness of models in social abstract argumentation, CoRR abs/1705.03381
[54] Modgil, S., Hierarchical argumentation, (Fisher, M.; van der Hoek, W.; Konev, B.; Lisitsa, A., Logics in Artificial Intelligence (2006), Springer: Springer Berlin, Heidelberg), 319-332 · Zbl 1152.68611
[55] Baroni, P.; Dunne, P.; Giacomin, M., On the resolution-based family of abstract argumentation semantics and its grounded instance, Artif. Intell., 175, 3, 791-813 (2011) · Zbl 1216.68255
[56] Nicholson, W.; Snyder, C., Microeconomic Theory: Basic Principles and Extensions (2007), South-Western College Pub, ISBN-13: 978-0324585070
[57] (2019), Wikipedia, the free encyclopedia, Revealed preference, Online
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.