×

An improved continuum-based finite-discrete element method with intra-element fracturing algorithm. (English) Zbl 07415270

Summary: This work develops a continuum-based combined finite-discrete element method (FDEM) in the framework of the explicit finite element method in conjunction with fracture algorithms. To account for complex fracturing processes, both shear failure and tensile failure criteria are implemented. Furthermore, to investigate the effect of different fracture algorithms on the accuracy and computational efficiency of simulations, both the inter-element and intra-element fracture algorithms are developed in the continuum-based framework. Then, they are compared by two benchmark tests, of rock: the Brazilian tests and uniaxial tension tests. Besides, uniaxial compression tests under different loading rates are carried out to demonstrate the shear failure criterion and the corresponding fracture algorithm.The simulation results converge with the decrease of element sizes in the inter-element fracture algorithm. The intra-element fracture algorithm is proven to be more efficient and accurate in the simulation of fracturing processes compared to the inter-element fracture algorithm.

MSC:

74-XX Mechanics of deformable solids
76-XX Fluid mechanics

Software:

HOSS
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Munjiza, A., Discrete Elements in Transient Dynamics of Fractured Media (1992), Swansea University: Swansea University UK, (Ph.D. thesis)
[2] Munjiza, A.; Owen, D.; Bicanic, N., A combined finite-discrete element method in transient dynamics of fracturing solids, Eng. Comput., 12, 2, 145-174 (1995) · Zbl 0822.73070
[3] Yu, J., A Contact Interaction Framework for Numerical Simulation of Multi-Body Problems and Aspects of Damage and Fracture for Brittle Materials (1999), Swansea University: Swansea University UK, (Ph.D. thesis)
[4] Owen, D.; Feng, Y., Parallelised finite/discrete element simulation of multi-fracturing solids and discrete systems, Eng. Comput., 18, 3/4, 557-576 (2001) · Zbl 0987.74071
[5] Knight, E. E.; Rougier, E.; Lei, Z.; Euser, B.; Chau, V.; Boyce, S. H.; Gao, K.; Okubo, K.; Froment, M., HOSS: an implementation of the combined finite-discrete element method, Comput. Part. Mech., 1-23 (2020)
[6] Rougier, E.; Munjiza, A.; Lei, Z.; Chau, V. T.; Knight, E. E.; Hunter, A.; Srinivasan, G., The combined plastic and discrete fracture deformation framework for finite-discrete element methods, Internat. J. Numer. Methods Engrg., 121, 5, 1020-1035 (2020)
[7] Fu, P.; Johnson, S. M.; Carrigan, C. R., An explicitly coupled hydro-geomechanical model for simulating hydraulic fracturing in arbitrary discrete fracture networks, Int. J. Numer. Anal. Methods Geomech., 37, 14, 2278-2300 (2013)
[8] Lei, Q.; Latham, J.-P.; Xiang, J., Implementation of an empirical joint constitutive model into finite-discrete element analysis of the geomechanical behaviour of fractured rocks, Rock Mech. Rock Eng., 49, 12, 4799-4816 (2016)
[9] Wang, Y.; Ju, Y.; Chen, J.; Song, J., Adaptive finite element-discrete element analysis for the multistage supercritical CO_2 fracturing and microseismic modelling of horizontal wells in tight reservoirs considering pre-existing fractures and thermal-hydro-mechanical coupling, J. Nat. Gas Sci. Eng., 61, 251-269 (2019)
[10] Munjiza, A.; Rougier, E.; Lei, Z.; Knight, E. E., FSIS: a novel fluid-solid interaction solver for fracturing and fragmenting solids, Comput. Part. Mech., 1-17 (2020)
[11] Yan, C.; Jiao, Y.-Y., FDEM-TH3D: A three-dimensional coupled hydrothermal model for fractured rock, Int. J. Numer. Anal. Methods Geomech., 43, 1, 415-440 (2019)
[12] Joulin, C.; Xiang, J.; Latham, J.-P., A novel thermo-mechanical coupling approach for thermal fracturing of rocks in the three-dimensional FDEM, Comput. Part. Mech., 1-12 (2020)
[13] Profit, M.; Dutko, M.; Yu, J.; Cole, S.; Angus, D.; Baird, A., Complementary hydro-mechanical coupled finite/discrete element and microseismic modelling to predict hydraulic fracture propagation in tight shale reservoirs, Comput. Part. Mech., 3, 2, 229-248 (2016)
[14] Han, K.; Peric, D.; Owen, D.; Yu, J., A combined finite/discrete element simulation of shot peening processes-Part II: 3D interaction laws, Eng. Comput., 17, 6, 680-702 (2000) · Zbl 1112.74516
[15] Klerck, P.; Sellers, E.; Owen, D., Discrete fracture in quasi-brittle materials under compressive and tensile stress states, Comput. Methods Appl. Mech. Engrg., 193, 27-29, 3035-3056 (2004) · Zbl 1067.74561
[16] Hamdi, P.; Stead, D.; Elmo, D., Damage characterization during laboratory strength testing: a 3D-finite-discrete element approach, Comput. Geotech., 60, 33-46 (2014)
[17] Ju, Y.; Wang, Y.; Chen, J.; Gao, F.; Wang, J., Adaptive finite element-discrete element method for numerical analysis of the multistage hydrofracturing of horizontal wells in tight reservoirs considering pre-existing fractures, hydromechanical coupling, and leak-off effects, J. Nat. Gas Sci. Eng., 54, 266-282 (2018)
[18] Munjiza, A.; Andrews, K.; White, J., Combined single and smeared crack model in combined finite-discrete element analysis, Internat. J. Numer. Methods Engrg., 44, 1, 41-57 (1999) · Zbl 0936.74071
[19] Munjiza, A.; John, N., Mesh size sensitivity of the combined FEM/DEM fracture and fragmentation algorithms, Eng. Fract. Mech., 69, 2, 281-295 (2002)
[20] Guo, L.; Xiang, J.; Latham, J.-P.; Izzuddin, B., A numerical investigation of mesh sensitivity for a new three-dimensional fracture model within the combined finite-discrete element method, Eng. Fract. Mech., 151, 70-91 (2016)
[21] Morris, J. P.; Rubin, M.; Block, G.; Bonner, M., Simulations of fracture and fragmentation of geologic materials using combined FEM/DEM analysis, Int. J. Impact Eng., 33, 1-12, 463-473 (2006)
[22] Settgast, R. R.; Fu, P.; Walsh, S. D.; White, J. A.; Annavarapu, C.; Ryerson, F. J., A fully coupled method for massively parallel simulation of hydraulically driven fractures in 3-dimensions, Int. J. Numer. Anal. Methods Geomech., 41, 5, 627-653 (2017)
[23] Rockfield, R. R., ELFEN 2D/3D Numerical Modelling Package (2004), Rockfield Software Ltd. Swansea: Rockfield Software Ltd. Swansea UK
[24] Munjiza, A. A., The Combined Finite-Discrete Element Method (2004), John Wiley & Sons · Zbl 1194.74452
[25] Feng, Y.; Tan, Y., On Minkowski difference based contact detection in discrete/discontinuous modelling of convex polygons/polyhedra: Algorithms and implementation, Eng. Comput., 37, 1, 54-72 (2020)
[26] Feng, Y., An energy-conserving contact theory for discrete element modelling of arbitrarily shaped particles: Basic framework and general contact model, Comput. Methods Appl. Mech. Engrg., 373, Article 113454 pp. (2021) · Zbl 07337749
[27] Pietruszczak, S., Fundamentals of Plasticity in Geomechanics (2010), CRC Press Boca Raton: CRC Press Boca Raton FL · Zbl 1219.74002
[28] Pande, G.; Pietruszczak, S.; Wang, M., Role of gradation curve in description of mechanical behavior of unsaturated soils, Int. J. Geomech., 20, 2, Article 04019159 pp. (2020)
[29] Bažant, Z. P.; Oh, B. H., Crack band theory for fracture of concrete, Matériaux Constr., 16, 3, 155-177 (1983)
[30] De Borst, R., (Hinton, E.; Owen, D. R.J., Computational Aspects of Smeared Crack Analysis Computational Modelling of RC Structures (1986), Pineridge Press: Pineridge Press Swansea), (Chapter 2)
[31] Li, D.; Wong, L. N.Y., The Brazilian disc test for rock mechanics applications: review and new insights, Rock Mech. Rock Eng., 46, 2, 269-287 (2013)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.