×

Quasi-normal mode of a regular Schwarzschild black hole. (English) Zbl 1479.83173

MSC:

83C57 Black holes
83C35 Gravitational waves
58K30 Global theory of singularities
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Remillard R A and McClintock J E 2006 X-ray properties of black-hole binaries Annu. Rev. Astron. Astrophys.44 49
[2] Gillessen S, Eisenhauer F, Fritz T K, Bartko H, Dodds-Eden K, Pfuhl O, Ott T and Genzel R 2009 The orbit of the star S2 around SGR A* from very large telescope and Keck data Astrophys. J.707 L114
[3] Villani M 2015 Constraints on ADM tetrad gravity parameter space from S2 star in the center of the Galaxy and from the Solar System (arXiv:1502.06801[gr-qc])
[4] Ghetz A M et al 2008 Measuring distance and properties of the Milky Way’s central supermassive black hole with stellar orbits Astrophys. J.689 1044
[5] Gillessen S, Eisenhauer F, Trippe S, Alexander T, Genzel R, Martins F and Ott T 2009 Monitoring stellar orbits around the massive black hole in the galactic center Astrophys. J.692 1075
[6] Abbot B P et al 2015 Observation of gravitational waves from a binary black hole merger Phys. Rev. Lett.116 061102
[7] Abbot B P et al 2019 GWTC-1: a gravitational-wave transient catalog of compact binary Mergers observedby LIGO and Virgo during the first and second observing run Phys. Rev. X 9 031040-1
[8] The Event Horizon Telescope Collaboration 2019 First M87 event horizon telescope results. I. The shadow of the supermassive black hole Astrophys. J.875 L1
[9] The Event Horizon Telescope Collaboration 2019 First M87 event horizon telescope results. II. Array and instrumentation Astrophys. J.875 L2
[10] The Event Horizon Telescope Collaboration 2019 First M87 event horizon telescope results. III. Data processing and calibration Astrophys. J.875 L3
[11] The Event Horizon Telescope Collaboration 2019 First M87 event horizon telescope results. IV. Imaging the central supermassive black hole Astrophys. J.875 L4
[12] The Event Horizon Telescope Collaboration 2019 First M87 event horizon telescope Results. V. Physical origin of the asymmetric ring Astrophys. J.875 L5
[13] The Event Horizon Telescope Collaboration 2019 First M87 event horizon telescope results. VI. The shadow and mass of the central black hole Astrophys. J.875 L6
[14] Penrose R 1969 Gravitational collapse: the role of general relativity Riv. Nuovo Cimento1 252
[15] Ashtekar A et al 2006 Quantum nature of the big bang Phys. Rev. Lett.96 141301 · Zbl 1153.83417
[16] Rovelli C and Vidotto F 2014 Planck stars Int. J. Mod. Phys. D 23 1442026
[17] De Lorenzo T et al 2015 On the effective metric of a Planck star Gen. Relat. Gravit.47 41 · Zbl 1317.83034
[18] Hayward S A 2006 Formation and evaporation of regular black holes Phys. Rev. Lett.96 31103
[19] de Lorenzo T et al 2016 Non-singular rotating black hole with a time delay in the center Gen. Relat. Gravit.48 31 · Zbl 1337.83034
[20] Bambi C and Modesto L 2013 Rotating regular black holes Phys. Lett. B 721 329 · Zbl 1309.83058
[21] Dymnikova I 1992 Vacuum nonsingular black hole Gen. Relat. Gravit.24 235
[22] Bardeen J M 1968 Non-singular general-relativistic gravitational collapse Proc. of Int. Conf. GR5(Tbilisi,) p 174
[23] Mazur P O and Mottola E 2001 Gravitational condensate star: an alternative to black holes (arXiv:gr-qc/0109035)
[24] Maggiore M 2018 Gravitational Waves(Astrophysics and Cosmology vol 2) 1st edn (Oxford: Oxford University Press)
[25] Perez-Roman I and Bretón N 2018 The region interior to the event horizon of the regular Hayward black hole Gen. Relat. Gravit.50 64 · Zbl 1392.83054
[26] Fan Z-Y 2017 Critical phenomena of regular black holes in anti-de Sitterspace-time Eur. Phys. J. C 77 266
[27] Kokkotas K D 1999 Quasi-normal modes of stars and black holes Living Rev. Relat.2 2 · Zbl 0984.83002
[28] Chandrasekhar S and Detweiler S 1975 The quasi-normal modes of the Schwarzschild black hole Proc. R. Soc. Lond. A 344 1639
[29] Leaver E W 1985 An analytic representation for the quasi-normal modes of Kerr black holes Proc. R. Soc. Lond. A 402 285
[30] Cruz M B and Silva C A 2019 Eur. Phys. J. C 79 157
[31] Liu C et al 2020 Phys. Rev. D 101 084001
[32] Bouhmadi-López M, Brahma S, Chen C-Y, Chen P and Yeom D-h 2020 J. Cosmol. Astropart. Phys. JCAP07(2020)066
[33] Martín-García J M, Portugal R and Manssur L R U 2007 The Invar tensor package Comput. Phys. Commun.177 640 · Zbl 1196.15006
[34] Martín-García J M, Yllanes D and Portugal R 2008 The Invar tensor package: differential invariants of Riemann Comput. Phys. Commun.179 586 · Zbl 1197.15001
[35] Martín-García J M 2008 xPerm: fast index canonicalization for tensor computer algebra Comput. Phys. Commun.179 597 · Zbl 1197.15002
[36] Brizuela D, Martín-García J M and Mena Marugán G A 2009 xPert: computer algebra for metric perturbation theory Gen. Relat. Gravit.41 2415 · Zbl 1176.83004
[37] García-Parrado A and Martín-García J M 2012 Spinors: a mathematica package for doing spinor calculus in general relativity Comput. Phys. Commun.183 2214 · Zbl 1296.83004
[38] Pitrou C et al 2013 xPand: an algorithm for perturbing homogeneous cosmologies (arXiv:1302.6174[astro-ph])
[39] Nutma T 2013 xTras: a field-theory inspired xAct package for mathematica (arXiv:1308.3493[cs.SC])
[40] Konoplya R A and Zhidenko A 2011 Quasinormal modes of black holes: from astrophysics to string theory Rev. Mod. Phys.83 793
[41] Schutz B F and Will C M 1985 Black hole normal modes-a semianalytic approach Astrophys. J.291 L33
[42] Iyer S and Will C M 1987 Black-hole normal modes: a WKB approach. I. Foundations and application of a higher-order WKB analysis of potential-barrier scattering Phys. Rev. D 35 3621
[43] Konoplya R A 2003 Quasinormal behavior of the D-dimensional Schwarzshild black hole and higher order WKB approach Phys. Rev. D 68 024018
[44] Wu C 2018 Quasinormal frequencies of gravitational perturbation in regular black hole spacetimes Eur. Phys. J. C 78 283
[45] Lin K, Li J and Yang S 2013 Quasinormal modes of Hayward regular black hole Int. J. Theor. Phys.52 3771 · Zbl 1274.83081
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.