×

Navier-Stokes solvers for incompressible single- and two-phase flows. (English) Zbl 1480.76078

Summary: The presented work is dedicated to the mathematical and numerical modeling of unsteady single- and two-phase flows using finite volume and penalty methods. Two classes of Navier-Stokes solvers are considered. Their accuracy and robustness are compared to identify their respective strengths and weaknesses. Exact (also referred to as monolythic) solvers such as the Augmented Lagrangian and the Fully Coupled methods address the saddle-point structure on the pressure-velocity couple of the discretized system by means of a penalization term or even directly, whereas approximate (segregated) solvers such as the Standard Projection method rely on operator splitting to break the problem down to decoupled systems. The objective is to compare all approaches in the context of two-phase flows at high viscosity and density ratios. To characterize the interface location, a volume-of-fluid (VOF) approach is used based on a Piecewise Linear Interface Construction (PLIC). Various 2D simulations are performed on single- and two-phase flows to characterize the behavior and performances of the various solvers.

MSC:

76M12 Finite volume methods applied to problems in fluid mechanics
76D05 Navier-Stokes equations for incompressible viscous fluids
76T06 Liquid-liquid two component flows

Software:

hypre; ILUT
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] M. Benzi and B. Uçar. Block triangular preconditioners for M-matrices and Markov chains. Electronic Transactions on Numerical Analysis, 26:209-227, 2007. · Zbl 1171.65388
[2] N. Bootland, A. Bentley, C. Kees, and A. Wathen. Preconditioners for Two-Phase Incom-pressible Navier-Stokes Flow. SIAM Journal on Scientific Computing, 41(4):B843-B869, 2019. · Zbl 1421.76161
[3] J. U. Brackbill, D. B. Kothe, and C. Zemach. A continuum method for modeling surface tension. Journal of Computational Physics, 100(2):335-354, 1992. · Zbl 0775.76110
[4] J. W. Cahn and J. E. Hilliard. Free energy of a nonuniform system. I. Interfacial free energy. The Journal of Chemical Physics, 28(2):258-267, 1958. · Zbl 1431.35066
[5] J. Cahouet and J.-P. Chabard. Some fast 3D finite element solvers for the generalized Stokes problem. International Journal for Numerical Methods in Fluids, 8(8):869-895, 1988. · Zbl 0665.76038
[6] J-P. Caltagirone and J. Breil. Sur une méthode de projection vectorielle pour la résolution deś equations de Navier-Stokes. Comptes Rendus de l’Académie des Sciences -Series IIB -Mechanics-Physics-Astronomy, 327(11):1179-1184, 1999. · Zbl 0968.76048
[7] C.-Y. Ku. A novel method for solving ill-conditioned systems of linear equations with ex-treme physical property contrasts. Computer Modeling in Engineering and Sciences, 96:409-434, 2013. · Zbl 1356.65110
[8] A.-J. Chorin. Numerical solution of the Navier-Stokes equations. Mathematics of Computation, 22(104):745-762, 1968. · Zbl 0198.50103
[9] C. C. Douglas, L. Lee, and M.-C. Yeung. On solving ill conditioned linear systems. Proce-dia Computer Science, 80:941-950, 2016. International Conference on Computational Science 2016, ICCS 2016, 6-8 June 2016, San Diego, California, USA.
[10] M.-S. Dodd and A. Ferrante. Fast pressure-correction method for incompressible two-fluid flows. Journal of Computational Physics, 273:416-434, 2014. · Zbl 1351.76161
[11] S. David, E. Howard and J.-W. Andrew. Finite elements and fast iterative solvers: With applications in incompressible fluid dynamics. 01 2006.
[12] H. Elman and S.-R. Tuminar. Boundary conditions in approximate commutator precondi-tioners for the Navier-Stokes equations. Electronic Transactions on Numerical Analysis, 35:257-280, 2009. · Zbl 1391.76539
[13] D.-R. Falgout and U.-M. Yang. hypre: A library of high performance preconditioners. In Peter M. A. Sloot, Alfons G. Hoekstra, C. J. Kenneth Tan, and Jack J. Dongarra, Eds., Compu-tational Science -ICCS 2002, pages 632-641, Springer Berlin Heidelberg, 2002. · Zbl 1056.65046
[14] M. Fortin and R. Glowinski. Augmented Lagrangian methods: Applications to the numer-ical solution of boundary-value problems. ZAMM -Journal of Applied Mathematics and Me-chanics / Zeitschrift für Angewandte Mathematik und Mechanik, 65(12):622-622, 1985.
[15] D. Fuster. An energy preserving formulation for the simulation of multiphase turbulent flows. Journal of Computational Physics, 235:114-128, 2013.
[16] K. Goda. A multistep physics technique with implicit difference schemes for calculating two-or three-dimensional cavity flows. Journal of Computational Physics, 30:76-95, 1979. · Zbl 0405.76017
[17] J.-L. Guermond. Remarques sur les méthodes de projection pour l’approximation deś equations de Navier-Stokes. Numer. Math., 67(4):465-473, 1994. · Zbl 0802.76057
[18] J.-L. Guermond and A. Salgado. A splitting method for incompressible flows with variable density based on a pressure poisson equation. Journal of Computational Physics, 228:2834-2846, 2009. · Zbl 1159.76028
[19] R. Guo and Y. Xu. Efficient, accurate and energy stable discontinuous Galerkin methods for phase field models of two-phase incompressible flows. Communications in Computational Physics, 26:1224-1248, 2019.
[20] F.-H. Harlow and J. E. Welch. Numerical calculation of time-dependent viscous incompress-ible flow of fluid with free surface. The Physics of Fluids, 8(12):2182-2189, 1965. · Zbl 1180.76043
[21] S. Turek, D. Kuzmin, N. Parolini, E. Burman, S. Ganesan, S. Hysing, and L. Tobiska. Quanti-tative benchmark computations of two-dimensional bubble dynamics. International Journal for Numerical Methods in Fluids, 60:1259-1288, 2009. · Zbl 1273.76276
[22] C. Kahle, J. Bosch, and M. Stoll. Preconditioning of a coupled Cahn-Hilliard Navier-Stokes system. Communications in Computational Physics, 23(2):603-628, 2018.
[23] D.-C. Sorensen, J.-J. Dongarra, L.-S. Duff, and H. A. Vander Vorst. Numerical Linear Algebra for High Performance Computers. Society for Industrial and Applied Mathematics, Philadelphia, PA, USA, 1998. · Zbl 0914.65014
[24] P. Lubin, T. N. Randrianarivelo, J.-P. Caltagirone, and S. Vincent. An adaptative aug-mented Lagrangian method for three-dimensional multi-material flows. Computers and Flu-ids, 33:1273-1289, 2004. · Zbl 1079.76047
[25] I. Kataoka. Local instant formulation of two-phase flow. International Journal of Multiphase Flow, 12(5):745-758, 1986. · Zbl 0613.76114
[26] G.-H. Golub, M. Benzi, and J. Liesen. Numerical solution of saddle point problems. Acta Numerica, 14:1-137, 2005. · Zbl 1115.65034
[27] M. Benzi and M. Olshanskii. An augmented Lagrangian-based approach to the oseen prob-lem. SIAM Journal on Scientific Computing, 28:2095-2113, 2006. · Zbl 1126.76028
[28] M. Cai, A. Nonaka, J. B. Bell, B. E. Griffith, and A. Donev. Efficient variable-coefficient finite-volume Stokes solvers. Communications in Computational Physics, 16(5):1263-1297, 2014. · Zbl 1373.76119
[29] M. Marc, N. Xavier, G. Stéphane, and G. Stéphane. Benchmark solution for a three-dimensional mixed-convection flow, Part 2: Analysis of Richardson extrapolation in the presence of a singularity. Numerical Heat Transfer, 60:346-369, 2011.
[30] B. Olivier and P. Roger. Benchmark spectral results on the lid-driven cavity flow. Computers and Fluids, 27:421-433, 1998. · Zbl 0964.76066
[31] C.-H. Bruneau, P. Angot, and P. Fabrie. A penalization method to take into account obstacles in viscous flows. Numerische Mathematik, 81:497-520, 1999. · Zbl 0921.76168
[32] Y. Saad. ILUT: A dual threshold incomplete LU factorization. Numerical Linear Algebra with Applications, 1(4):387-402, 1994. · Zbl 0838.65026
[33] Y. Saad and M. Schultz. GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM Journal on Scientific and Statistical Computing, 7(3):856-869, 1986. · Zbl 0599.65018
[34] C.-W. Shu, W.-S. Don, D. Gottlieb, O. Schilling, and L. Jameson. Numerical convergence study of nearly incompressible, inviscid Taylor-Green vortex flow. Journal of Scientific Com-puting, 24(1):1-27, 2005. · Zbl 1161.76535
[35] K. Stüben. A review of algebraic multigrid. Journal of Computational and Applied Mathematics, 128(1):281-309, 2001. · Zbl 0979.65111
[36] R. Témam. Sur l’approximation de la solution deséquations de Navier-Stokes par la méthode des pas fractionnaires (i). Archive for Rational Mechanics and Analysis, 32(2):135-153, 1969. · Zbl 0195.46001
[37] S. Vincent, A. Sarthou, J. P. Caltagirone, F. Sonilhac, P. Février, C. Mignot, and G. Pianet. Adaptive augmented Lagrangian techniques for simulating unsteady multiphase flows. 07 2007.
[38] S. Vincent, A. Sarthou, J. P. Caltagirone, F. Sonilhac, P. Février, C. Mignot, and G. Pianet. Augmented Lagrangian and penalty methods for the simulation of two-phase flows inter-acting with moving solids. Application to hydroplaning flows interacting with real tire tread patterns. Journal of Computational Physics, 230(4):956-983, 2011. · Zbl 1391.76584
[39] D. L. Youngs. Time-dependent multi-material flow with large fluid distortion. In K. W. Mor-ton and M. J. Baines, Eds., Numerical Methods for Fluid Dynamics, pages 273-285. Academic Press, 1982. · Zbl 0537.76071
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.