SPHINCS_BSSN: a general relativistic smooth particle hydrodynamics code for dynamical spacetimes. (English) Zbl 1480.83062


83C55 Macroscopic interaction of the gravitational field with matter (hydrodynamics, etc.)
85A15 Galactic and stellar structure
83C57 Black holes
76L05 Shock waves and blast waves in fluid mechanics
76T25 Granular flows
83-10 Mathematical modeling or simulation for problems pertaining to relativity and gravitational theory
Full Text: DOI arXiv Link


[1] Abbott B P et al 2016 Observation of gravitational waves from a binary black hole merger Phys. Rev. Lett.116 061102
[2] Abbott B P et al 2017 GW170817: observation of gravitational waves from a binary neutron star inspiral Phys. Rev. Lett.119 161101
[3] Abbott B P et al 2017 Multi-messenger observations of a binary neutron star merger Astrophys. J.848 L12
[4] Abbott B P et al 2017 Gravitational waves and gamma-rays from a binary neutron star merger: GW170817 and GRB 170817A Astrophys. J.848 L13
[5] Goldstein A et al 2017 An ordinary short gamma-ray burst with extraordinary implications: Fermi-GBM detection of GRB 170817A Astrophys. J.848 L14
[6] Savchenko V et al 2017 INTEGRAL detection of the first prompt gamma-ray signal coincident with the gravitational-wave event GW170817 Astrophys. J.848 L15
[7] Troja E et al 2017 The x-ray counterpart to the gravitational-wave event GW170817 Nature551 71-4
[8] Hallinan G et al 2017 A radio counterpart to a neutron star merger Science358 1579-83
[9] Kasliwal M M et al 2017 Illuminating gravitational waves: a concordant picture of photons from a neutron star merger Science358 1559-65
[10] Mooley K P et al 2018 Nature561 355-9
[11] Eichler D, Livio M, Piran T and Schramm D N 1989 Nucleosynthesis, neutrino bursts and γ-rays from coalescing neutron stars Nature340 126
[12] Abbott B P et al 2017 A gravitational-wave standard siren measurement of the Hubble constant Nature551 85-8
[13] Kulkarni S R 2005 Modeling supernova-like explosions associated with gamma-ray bursts with short durations (arXiv:astro-ph/0510256)
[14] Metzger B D et al 2010 Electromagnetic counterparts of compact object mergers powered by the radioactive decay of r-process nuclei Mon. Not. R. Astron. Soc.406 2650-62
[15] Rosswog S, Sollerman J, Feindt U, Goobar A, Korobkin O, Wollaeger R, Fremling C and Kasliwal M M 2018 The first direct double neutron star merger detection: implications for cosmic nucleosynthesis Astron. Astrophys.615 A132
[16] Kilonovae B D M 2019 Living Rev. Relativ.23 1
[17] Lattimer J M and Schramm D N 1974 Black-hole-neutron-star collisions Astrophys. J.192 L145
[18] Lattimer J M, Mackie F, Ravenhall D G and Schramm D N 1977 The decompression of cold neutron star matter Astrophys. J.213 225-33
[19] Rosswog S, Liebendörfer M, Thielemann F-K, Davies M B, Benz W and Piran T 1999 Mass ejection in neutron star mergers Astron. Astrophys.341 499-526
[20] Freiburghaus C, Rosswog S and Thielemann F-K 1999 r-process in neutron star mergers Astrophys. J.525 L121
[21] Cowan J J, Sneden C, Lawler J E, Aprahamian A, Wiescher M, Langanke K, Martinez-Pinedo G and Thielemann F-K 2019 Making the heaviest elements in the Universe: a review of the rapid neutron capture process (arXiv:1901.01410)
[22] Korobkin O, Rosswog S, Arcones A and Winteler C 2012 On the astrophysical robustness of the neutron star merger r-process Mon. Not. R. Astron. Soc.426 1940-9
[23] Lippuner J and Roberts L F 2015 r-process lanthanide production and heating rates in kilonovae Astrophys. J.815 82
[24] Kasliwal M M et al 2019 Spitzer mid-infrared detections of neutron star merger GW170817 suggests synthesis of the heaviest elements Mon. Not. R. Astron. Soc.
[25] Kasen D, Badnell N R and Barnes J 2013 Opacities and spectra of the r-process ejecta from neutron star mergers Astrophys. J.774 25
[26] Tanaka M and Hotokezaka K 2013 Radiative transfer simulations of neutron star merger ejecta Astrophys. J.775 113
[27] Tanaka M, Kato D, Gaigalas G and Kawaguchi K 2020 Systematic opacity calculations for kilonovae Mon. Not. R. Astron. Soc.496 1369-92
[28] Alcubierre M 2008 Introduction to 3 + 1 Numerical Relativity (Oxford: Oxford University Press) · Zbl 1140.83002
[29] Baumgarte T W and Shapiro S L 2010 Numerical Relativity: Solving Einstein’s Equations on the Computer (Cambridge: University Press) · Zbl 1198.83001
[30] Rezzolla L and Zanotti O 2013 Relativistic Hydrodynamics (Oxford: Oxford University Press) · Zbl 1388.76002
[31] Shibata M 2016 Numerical Relativity (Singapore: World Scientific) · Zbl 1335.83002
[32] Baiotti L and Rezzolla L 2017 Binary neutron star mergers: a review of Einstein’s richest laboratory Rep. Prog. Phys.80 096901
[33] Duez M D and Zlochower Y 2019 Numerical relativity of compact binaries in the 21st century Rep. Prog. Phys.82 016902
[34] Shibata M and Hotokezaka K 2019 Merger and mass ejection of neutron star binaries Annu. Rev. Nucl. Part. Sci.69 023625
[35] Amit P, Tichy W, Brügmann B and Dietrich T 2020 Increasing the accuracy of binary neutron star simulations with an improved vacuum treatment Phys. Rev. D 102 104014
[36] Schoepe A, Hilditch D and Bugner M 2018 Revisiting hyperbolicity of relativistic fluids Phys. Rev. D 97 123009
[37] Monaghan J J 2005 Smoothed particle hydrodynamics Rep. Prog. Phys.68 1703-59
[38] Rosswog S 2009 Astrophysical smooth particle hydrodynamics New Astron. Rev.53 78-104
[39] Springel V 2010 Smoothed particle hydrodynamics in astrophysics Annu. Rev. Astron. Astrophys.48 391-430
[40] Price D J 2012 Smoothed particle hydrodynamics and magnetohydrodynamics J. Comput. Phys.231 759-94 · Zbl 1402.76100
[41] Rosswog S 2015 SPH methods in the modelling of compact objects Living Rev. Comput. Astrophys.1 2015
[42] Springel V 2010 E pur si muove: Galilean-invariant cosmological hydrodynamical simulations on a moving mesh Mon. Not. R. Astron. Soc.401 791-851
[43] Duffell P C and MacFadyen A I 2011 TESS: a relativistic hydrodynamics code on a moving Voronoi mesh Astrophys. J. Suppl.197 15
[44] Gaburov E and Nitadori K 2011 Astrophysical weighted particle magnetohydrodynamics Mon. Not. R. Astron. Soc.414 129-54
[45] Hopkins P F 2015 A new class of accurate, mesh-free hydrodynamic simulation methods Mon. Not. R. Astron. Soc.450 53-110
[46] Hubber D A, Rosotti G P and Booth R A 2018 GANDALF—graphical astrophysics code for N-body dynamics and Lagrangian fluids Mon. Not. R. Astron. Soc.473 1603-32
[47] Rosswog S and Davies M B 2002 High-resolution calculations of merging neutron stars—I. Model description and hydrodynamic evolution Mon. Not. R. Astron. Soc.334 481-97
[48] Rosswog S and Liebendörfer M 2003 High-resolution calculations of merging neutron stars—II. Neutrino emission Mon. Not. R. Astron. Soc.342 673-89
[49] Rosswog S, Ramirez-Ruiz E and Davies M B 2003 High-resolution calculations of merging neutron stars—III. Gamma-ray bursts Mon. Not. R. Astron. Soc.345 1077-90
[50] Faber J A and Rasio F A 2000 Post-Newtonian SPH calculations of binary neutron star coalescence: method and first results Phys. Rev. D 62 064012
[51] Ayal S, Piran T, Oechslin R, Davies M B and Rosswog S 2001 Post‐Newtonian smoothed particle hydrodynamics Astrophys. J.550 846-59
[52] Faber J A, Rasio F A and Manor J B 2001 Post-Newtonian smoothed particle hydrodynamics calculations of binary neutron star coalescence. II. Binary mass ratio, equation of state, and spin dependence Phys. Rev. D 63 044012
[53] Blanchet L, Damour T and Schaefer. G 1990 Post-Newtonian hydrodynamics and post-Newtonian gravitational wave generation for numerical relativity Mon. Not. R. Astron. Soc.242 289-305 · Zbl 0694.76051
[54] Oechslin R, Rosswog S and Thielemann F-K 2002 Conformally flat smoothed particle hydrodynamics application to neutron star mergers Phys. Rev. D 65 103005
[55] Oechslin R, Uryū K, Poghosyan G and Thielemann F K 2004 The influence of quark matter at high densities on binary neutron star mergers Mon. Not. R. Astron. Soc.349 1469-80
[56] Faber J A, Baumgarte T W, Shapiro S L, Taniguchi K and Rasio F A 2006 Dynamical evolution of black hole-neutron star binaries in general relativity: simulations of tidal disruption Phys. Rev. D 73 024012
[57] Faber J, Baumgarte T, Shapiro S and Taniguchi K 2006 Astrophys. J.641 93-6
[58] Bauswein A, Oechslin R and Janka H-T 2010 Discriminating strange star mergers from neutron star mergers by gravitational-wave measurements Phys. Rev. D 81 024012
[59] Nakamura T, Oohara K and Kojima Y 1987 General relativistic collapse to black holes and gravitational waves from black holes Prog. Theor. Phys. Suppl.90 1-218
[60] Shibata M and Nakamura T 1995 Evolution of three-dimensional gravitational waves: harmonic slicing case Phys. Rev. D 52 5428-44 · Zbl 1250.83027
[61] Baumgarte T W and Shapiro S L 1999 Numerical integration of Einstein’s field equations Phys. Rev. D 59 024007 · Zbl 1250.83004
[62] Gottlieb S and Shu C-W 1998 Total variation diminishing Runge-Kutta schemes Math. Comput.67 73-85 · Zbl 0897.65058
[63] Monaghan J J and Price D J 2001 Variational principles for relativistic smoothed particle hydrodynamics Mon. Not. R. Astron. Soc.328 381-92
[64] Rosswog S 2010 Relativistic smooth particle hydrodynamics on a given background spacetime Class. Quantum Grav.27 114108 · Zbl 1190.83014
[65] Rosswog S 2010 Conservative special-relativistic smooth particle hydrodynamics J. Comput. Phys.229 8591-612 · Zbl 1381.76299
[66] Rosswog S 2015 Boosting the accuracy of SPH techniques: Newtonian and special-relativistic tests Mon. Not. R. Astron. Soc.448 3628-64
[67] Fock V 1964 Theory of Space, Time and Gravitation (Oxford: Pergamon)
[68] Siegler S and Riffert H 2000 Smoothed particle hydrodynamics simulations of ultrarelativistic shocks with artificial viscosity Astrophys. J.531 1053-66
[69] Etienne Z B, Faber J A, Liu Y T, Shapiro S L, Taniguchi K and Baumgarte T W 2008 Fully general relativistic simulations of black hole-neutron star mergers Phys. Rev. D 77 084002
[70] Wendland H 1995 Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree Adv. Comput. Math.4 389-96 · Zbl 0838.41014
[71] Rosswog S 2020 The Lagrangian hydrodynamics code MAGMA2 Mon. Not. R. Astron. Soc.498 4230-55
[72] Gafton E and Rosswog S 2011 A fast recursive coordinate bisection tree for neighbour search and gravity Mon. Not. R. Astron. Soc.418 770-81
[73] Liptai D and Price D J 2019 General relativistic smoothed particle hydrodynamics Mon. Not. R. Astron. Soc.485 819-42
[74] Chow E and Monaghan J J 1997 Ultrarelativistic SPH J. Comput. Phys.134 296 · Zbl 0887.76046
[75] Rosswog S 2020 A simple, entropy-based dissipation trigger for SPH Astrophys. J.898 60
[76] VonNeumann J and Richtmyer R D 1950 A method for the numerical calculation of hydrodynamic shocks J. Appl. Phys.21 232-7 · Zbl 0037.12002
[77] Frontiere N, Raskin C D and Owen J M 2017 CRKSPH—a conservative reproducing kernel smoothed particle hydrodynamics scheme J. Comput. Phys.332 160-209 · Zbl 1378.76092
[78] van Leer B 1974 Towards the ultimate conservative difference scheme. II. Monotonicity and conservation combined in a second-order scheme J. Comput. Phys.14 361-70 · Zbl 0276.65055
[79] van Leer B 1977 Towards the ultimate conservative difference scheme. IV. A new approach to numerical convection J. Comput. Phys.23 276 · Zbl 0339.76056
[80] Roe P L 1986 Characteristic-based schemes for the Euler equations Annu. Rev. Fluid Mech.18 337-65 · Zbl 0624.76093
[81] David Brown J, Diener P, Sarbach O, Schnetter E and Tiglio M 2009 Turduckening black holes: an analytical and computational study Phys. Rev. D 79 044023
[82] 2020 Einstein Toolkit https://einsteintoolkit.org/ (Online; accessed 9 December 2020)
[83] Frank L et al 2012 The Einstein Toolkit: a community computational infrastructure for relativistic astrophysics Class. Quantum Grav.29 115001 · Zbl 1247.83003
[84] Marronetti P, Tichy W, Brügmann B, Gonzalez J and Ulrich S 2008 High-spin binary black hole mergers Phys. Rev. D 77 064010
[85] Tichy W and Marronetti P 2007 Binary black hole mergers: large kicks for generic spin orientations Phys. Rev. D 76 061502
[86] Hockney R W and Eastwood J W 1988 Computer Simulation Using Particles 1st edn (New York: McGraw-Hill) · Zbl 0662.76002
[87] Cottet G-H and Koumoutsakos P D 2000 Vortex Methods (Cambridge: Cambridge University Press) · Zbl 1140.76002
[88] Monaghan J J 1992 Smoothed particle hydrodynamics Annu. Rev. Astron. Astrophys.30 543
[89] Bergdorf M and Koumoutsakos P 2006 A Lagrangian particle‐wavelet method Multiscale Model. Simul.5 980-95 · Zbl 1122.65085
[90] Monaghan J J 1985 Extrapolating B splines for interpolation J. Comput. Phys.60 253 · Zbl 0588.41005
[91] Press W H, Flannery B P, Teukolsky S A and Vetterling W T 1992 Numerical Recipes (Cambridge: Cambridge University Press) · Zbl 0778.65003
[92] Kozak Y, Dammati S S, Bravo L G, Hamlington P E and Poludnenko A Y 2020 WENO interpolation for Lagrangian particles in highly compressible flow regimes J. Comput. Phys.402 109054 · Zbl 1453.76165
[93] Timmes F X and Swesty F D 2000 The accuracy, consistency, and speed of an electron-positron equation of state based on table interpolation of the Helmholtz free energy Astrophys. J. Suppl. Ser.126 501-16
[94] Tolman R C 1939 Static solutions of Einstein’s field equations for spheres of fluid Phys. Rev.55 364-73 · JFM 65.1048.02
[95] Oppenheimer J R and Volkoff G M 1939 On massive neutron cores Phys. Rev.55 374-81 · Zbl 0020.28501
[96] Sod G A 1978 A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws J. Comput. Phys.27 1-31 · Zbl 0387.76063
[97] Marti J M and Müller E 1996 J. Comput. Phys.123 1 · Zbl 0839.76056
[98] Del Zanna L and Bucciantini N 2002 An efficient shock-capturing central-type scheme for multidimensional relativistic flows Astron. Astrophys.390 1177-86 · Zbl 1209.76022
[99] Marti J M and Müller E 2003 Numerical hydrodynamics in special relativity Living Rev. Relativ.6 7 · Zbl 1068.83502
[100] Font J A, Goodale T, Iyer S, Miller M, Rezzolla L, Seidel E, Stergioulas N, Suen W-M and Tobias M 2002 Three-dimensional numerical general relativistic hydrodynamics. II. Long-term dynamics of single relativistic stars Phys. Rev. D 65 084024
[101] Cordero-Carrión I, Cerdá-Durán P, Dimmelmeier H, Jaramillo J L, Novak J and Gourgoulhon E 2009 Improved constrained scheme for the Einstein equations: an approach to the uniqueness issue Phys. Rev. D 79 024017 · Zbl 1222.83024
[102] Bernuzzi S and Hilditch D 2010 Constraint violation in free evolution schemes: comparing the BSSNOK formulation with a conformal decomposition of the Z4 formulation Phys. Rev. D 81 084003
[103] Thornburg J 1996 Finding apparent horizons in numerical relativity Phys. Rev. D 54 4899-918
[104] Baiotti L, Hawke I, Montero P J, Frank L, Rezzolla L, Stergioulas N, Font J A and Seidel E 2005 Three-dimensional relativistic simulations of rotating neutron star collapse to a Kerr black hole Phys. Rev. D 71 024035
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.