Halter-Koch, Franz An approximation theorem for semigroups with divisor theory. (Ein Approximationssatz für Halbgruppen mit Divisorentheorie.) (German) Zbl 0742.20060 Result. Math. 19, No. 1-2, 74-82 (1991). Only commutative cancellative semigroups with units are considered. Let \(H\) be a semigroup and \(F(P)\) be the free abelian semigroup generated by the set \(P\). Then a semigroup homomorphism \(\partial: H\to F(P)\) is called divisor homomorphism if for all \(\alpha,\beta\in H\) the fact \(\partial(\alpha)|\partial(\beta)\) (in \(F(P)\)) implies \(\alpha|\beta\) (in \(H\)). A divisor theory for \(H\) means a divisor homomorphism \(\partial:H\to F(P)\) such that for every \(p\in P\) there is a finite number of elements \(a_ 1,\dots,a_ n\in H\) for which \(p\) is the greatest common divisor of \(\{\partial(\alpha_ 1),\dots,\partial(\alpha_ n)\}\). The notion of Krull semigroup was introduced in connection with conditions under which the semigroup ring \(R[H]\) would be a Krull ring and is a direct generalization of the notion of Krull ring. This notion is equivalent to the notion of semigroup with divisor theory. The main result of the paper is the proof of the approximation theorem for Krull semigroups which gives a new proof of the approximation theorem for Krull rings. [See: L. G. Chouinard, Can. J. Math. 33, 1459-1468 (1981; Zbl 0453.13005); U. Krause, Proc. Am. Math. Soc. 105, 546-554 (1989; Zbl 0692.20058).]. Reviewer: G.I.Zhitomirskij (Saratov) Cited in 14 Documents MSC: 20M14 Commutative semigroups 20M25 Semigroup rings, multiplicative semigroups of rings 20M15 Mappings of semigroups 13F07 Euclidean rings and generalizations Keywords:commutative cancellative semigroups; free abelian semigroup; semigroup homomorphism; divisor homomorphism; divisor theory; semigroup ring; approximation theorem; Krull semigroups; Krull rings Citations:Zbl 0453.13005; Zbl 0692.20058 × Cite Format Result Cite Review PDF Full Text: DOI References: [1] N. Bourbaki, Commutative Algebra, Addison-Wesley (1973). [2] L. G. Chouinard II, Krull semigroups and divisor class groups, Canad. J. Math. 33 (1981), 1459–1468. · Zbl 0453.13005 · doi:10.4153/CJM-1981-112-x [3] R. Gilmer, Commutative semigroup rings, The University of Chicago Press (1984). · Zbl 0566.20050 [4] F. Halter-Koch, Halbgruppen mit Divisorentheorie, Expo. Math. 8 (1990), 27–66. [5] H. Hasse, Bericht über neuere Untersuchungen und Probleme aus der Theorie der algebraischen Zahlkörper, Teil Ia, Jber. d. DMV 36 (1927), 233–311; Nachdruck: Physica-Verlag, Würzburg (1965). · JFM 53.0143.01 [6] U. Krause, On monoids of finite real character, Proc. Amer. Math. Soc. 105 (1989), 546–554. · Zbl 0692.20058 · doi:10.1090/S0002-9939-1989-0953009-9 [7] S. Lang, Algebra, Addison-Wesley (1984). [8] L. Skula, Divisorentheorie einer Halbgruppe, Math. Z. 114 (1970), 113–120. · Zbl 0177.03202 · doi:10.1007/BF01110320 [9] L. Skula, On c-semigroups, Acta Arith. 31 (1976), 247–257. · Zbl 0303.13014 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.