×

A filter in constructing the preconditioner for solving linear equation systems of radiation diffusion problems. (English) Zbl 07423482

Summary: The coefficient matrices of the linear equation systems arising from the radiation diffusion problems usually have orders of magnitude difference between their off-diagonal entries. While solving these linear equations with a preconditioned iterative method, the entries with small magnitudes may be insignificant to the preconditioner efficiency. In this paper, we use a filter to remove such small entries in the coefficient matrix while constructing the preconditioner. The proposed filter eliminates the small entries first according to a so-called weak dependence matrix, which relies on the conception of the strength of connections in algebraic multigrid. The preconditioner is then built based on the filtered matrix instead of the original one. Four strategies of filtering out entries are designed and investigated. Numerical results for various model-type problems and two real application problems, i.e., the multi-group radiation diffusion equations and the three temperature energy equations, are provided to show the effectiveness of the proposed method. In particular, this paper provides a practical approach to choose a proper parameter in the proposed method, which should help solve linear equation systems of radiation diffusion problems.

MSC:

65Mxx Numerical methods for partial differential equations, initial value and time-dependent initial-boundary value problems
35Kxx Parabolic equations and parabolic systems
65Yxx Computer aspects of numerical algorithms

Software:

hypre; ILUT; LAMG; BoomerAMG
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] An, H.-B.; Mo, Z.-Y.; Xu, X.-W.; Liu, X., On choosing a nonlinear initial iterate for solving the 2-D 3-T heat conduction equations, J Comput Phys, 228, 9, 3268-3287 (2009) · Zbl 1163.65059
[2] Benzi, M., Preconditioning techniques for large linear systems: a survey, J Comput Phys, 182, 2, 418-477 (2002) · Zbl 1015.65018
[3] Bienz, A.; Falgout, R. D.; Gropp, W.; Olson, L. N.; Schroder, J. B., Reducing parallel communication in algebraic multigrid through sparsification, SIAM Journal on Scientific Computing, 38, 5, S332-S357 (2016) · Zbl 1352.65102
[4] Brandt, A.; McCoruick, S.; Huge, J., Algebraic multigrid (AMG) for sparse matrix equations, Sparsity and its Applications, 257 (1985)
[5] Brandt, A., Algebraic multigrid theory: the symmetric case, Appl Math Comput, 19, 1-4, 23-56 (1986) · Zbl 0616.65037
[6] Chan, T. F.; Mathew, T. P., Domain decomposition algorithms, Acta Numerica, 3, 61-143 (1994) · Zbl 0809.65112
[7] Chan, T. F.; Van Der Vorst, H. A., Approximate and incomplete factorizations, Parallel numerical algorithms, 167-202 (1997), Springer · Zbl 0865.65015
[8] De Sterck, H.; Yang, U. M.; Heys, J. J., Reducing complexity in parallel algebraic multigrid preconditioners, SIAM J. Matrix Anal. Appl., 27, 4, 1019-1039 (2006) · Zbl 1102.65034
[9] Donatelli, M.; Krause, R.; Mazza, M.; Trotti, K., Multigrid preconditioners for anisotropic space-fractional diffusion equations, Adv Comput Math, 46, 49 (2020) · Zbl 1443.65122
[10] Falgout, R. D.; Schroder, J. B., Non-galerkin coarse grids for algebraic multigrid, SIAM Journal on Scientific Computing, 36, 3, C309-C334 (2014) · Zbl 1297.65035
[11] Falgout, R. D.; Yang, U. M., hypre: A library of high performance preconditioners, International Conference on Computational Science, 632-641 (2002), Springer · Zbl 1056.65046
[12] Gratton, S.; Hénon, P.; Jiránek, P.; Vasseur, X., Reducing complexity of algebraic multigrid by aggregation, Numerical Linear Algebra with Applications, 23, 3, 501-518 (2016) · Zbl 1413.65444
[13] Gustafsson, I., A class of first order factorization methods, BIT Numerical Mathematics, 18, 2, 142-156 (1978) · Zbl 0386.65006
[14] Hang, X.; Li, J.; Yuan, G., Convergence analysis on splitting iterative solution of multi-group radiation diffusion equations, Chin. J. Comput. Phys, 30, 1, 111-119 (2013)
[15] Kim, S. Y.; Im, Y.-T., Parallel processing of 3d rigid-viscoplastic finite element analysis using domain decomposition and modified block jacobi preconditioning technique, J. Mater. Process. Technol., 134, 2, 254-264 (2003)
[16] Kulkarni, D.; Schmidt, D.; Tsui, S.-K., Eigenvalues of Tridiagonal Pseudo-toeplitz Matrices (1999) · Zbl 0939.15002
[17] Livne, O. E.; Brandt, A., Lean algebraic multigrid (lamg): fast graph laplacian linear solver, SIAM Journal on Scientific Computing, 34, 4, B499-B522 (2012) · Zbl 1253.65045
[18] Meijerink, J. A.; Van Der Vorst, H. A., An iterative solution method for linear systems of which the coefficient matrix is a symmetric m-matrix, Math Comput, 31, 137, 148-162 (1977) · Zbl 0349.65020
[19] Morel, J. E.; Larsen, E. W.; Matzen, M. K., A synthetic acceleration scheme for radiative diffusion calculations, J. Quant. Spectrosc. Radiat. Transfer, 34, 3, 243-261 (1985)
[20] Ruge, J. W.; Stüben, K., Algebraic multigrid, Multigrid methods, 73-130 (1987), SIAM
[21] Saad, Y., Ilut: a dual threshold incomplete lu factorization, Numerical linear algebra with applications, 1, 4, 387-402 (1994) · Zbl 0838.65026
[22] Song, P.; Zhai, C.; Li, S.; Yong, H.; Qi, J., Lared-integration code for numerical simulation of the whole process of the indirect-drive laser inertial confinement fusion, High Power Laser and Particle Beams, 27, 3 (2015)
[23] Spielman, D. A., Algorithms, graph theory, and linear equations in laplacian matrices, Proceedings of the International Congress of Mathematicians 2010 (ICM 2010) (In 4 Volumes) Vol. I: Plenary Lectures and Ceremonies Vols. II-IV: Invited Lectures, 2698-2722 (2010), World Scientific · Zbl 1241.65033
[24] Spielman, D. A.; Teng, S.-H., Nearly linear time algorithms for preconditioning and solving symmetric, diagonally dominant linear systems, SIAM J. Matrix Anal. Appl., 35, 3, 835-885 (2014) · Zbl 1311.65031
[25] Stuben, K., Algebraic multigrid (AMG): an introduction with applications, Multigrid (2000)
[26] Stüben, K., A review of algebraic multigrid, Numerical Analysis: Historical Developments in the 20th Century, 331-359 (2001), Elsevier · Zbl 0979.65111
[27] Stüben, K.; Ruge, J. W.; Clees, T.; Gries, S., Algebraic multigrid: from academia to industry, Scientific Computing and Algorithms in Industrial Simulations, 83-119 (2017), Springer
[28] Treister, E.; Yavneh, I., Non-galerkin multigrid based on sparsified smoothed aggregation, SIAM Journal on Scientific Computing, 37, 1, A30-A54 (2015) · Zbl 1327.65264
[29] Vaidya, P. M., Solving linear equations with symmetric diagonally dominant matrices by constructing good preconditioners, A Talk Based on this Manuscript, 2, 3.4, 2-4 (1991)
[30] Vaněk, P.; Mandel, J.; Brezina, M., Algebraic multigrid by smoothed aggregation for second and fourth order elliptic problems, Computing, 56, 3, 179-196 (1996) · Zbl 0851.65087
[31] Xu, X.; Mo, Z., Algebraic interface-based coarsening amg preconditioner for multi-scale sparse matrices with applications to radiation hydrodynamics computation, Numerical Linear Algebra with Applications, 24, 2, e2078 (2017) · Zbl 1413.65081
[32] XU, X.; MO, Z.; AN, H., An adaptive amg preconditioning strategy for solving large-scale sparse linear systems, SCIENTIA SINICA Informationis, 46, 10, 1411-1420 (2016)
[33] Yang, U. M., Boomeramg: a parallel algebraic multigrid solver and preconditioner, Appl. Numer. Math., 41, 1, 155-177 (2002) · Zbl 0995.65128
[34] Yuan, G. W.; Hang, X. D.; Sheng, Z. Q.; Yue, J. Y., Progress in numerical methods for radiation diffusion equations, Chinese Journal of Computational Physics, 26, 4, 475-500 (2009)
[35] Zeyao, M.; Longjun, S.; Wittum, G., Parallel adaptive multigrid algorithm for 2-d 3-t diffusion equations, Int J Comput Math, 81, 3, 361-374 (2004) · Zbl 1093.65091
[36] Zhao, Z.; Wang, Y.; Feng, Z., Samg: sparsified graph-theoretic algebraic multigrid for solving large symmetric diagonally dominant (sdd) matrices, Proceedings of the 36th International Conference on Computer-Aided Design, 601-606 (2017), IEEE Press
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.