×

A mathematical investigation on the invariance problem of some hydraulic indices. (English) Zbl 07424991

Summary: In recent decades many mathematical models, both theoretical and computational, have been applied to hydraulic networks with considerable success, and recently this trend appears to be growing exponentially. Yet there are important problems of a mathematical nature that have very often had little consideration in this field, such as that of the invariance of the models with respect to the reference adopted. In this paper, a mathematical framework new in the field is used and, starting from the discussion of the invariance problem of local indices, the behavior of some widespread global ones that evaluate the resilience of a network will be investigated from both a theoretical and computational point of view. The authors also give suitable changing formulas in the local and global case and describe the conditions that ensure invariance. Through a mathematical-like formalization of the hydraulic network concept, the new framework finally allows to find a series of mathematical solutions to problems of this kind, two of which will be provided in the text.

MSC:

90Cxx Mathematical programming
28Axx Classical measure theory
00Axx General and miscellaneous specific topics
62Mxx Inference from stochastic processes
03Hxx Nonstandard models

Software:

EPANET; WaterNetGen
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Agathokleous, A.; Christodoulou, C.; Christodoulou, S. E., Topological robustness and vulnerability assessment of water distribution networks, Water Resour. Manag., 31, 4007-4021 (2017)
[2] Alperovits, E.; Shamir, U., Design of optimal water distribution systems, Water Resour. Res., 13, 885-900 (1977)
[3] Antoniotti, L.; Caldarola, F.; d’Atri, G.; Pellegrini, M., New approaches to basic calculus: an experimentation via numerical computation, (Sergeyev, Y. D.; Kvasov, D. E., Proceedings of the 3rd International Conference “Numerical Computations: Theory and Algorithms”. Proceedings of the 3rd International Conference “Numerical Computations: Theory and Algorithms”, Lecture Notes in Computer Science, 11973 (2020), Springer), 329-342 · Zbl 07249939
[4] Antoniotti, L.; Caldarola, F.; Maiolo, M., Infinite numerical computing applied to Peano’s, Hilbert’s, and Moore’s curves, Mediterranean J. Math., 17, 99 (2020) · Zbl 1484.28003
[5] Barnsley, M. F., Superfractals (2006), Cambridge University Press: Cambridge University Press Cambridge (UK) · Zbl 1123.28007
[6] Bi, W.; Dandy, G. C.; R., M. H., Improved genetic algorithm optimization of water distribution system design by incorporating domain knowledge, Environ. Model. Softw., 69, 370-381 (2015)
[7] Bonora, M.; Caldarola, F.; Maiolo, M., A new set of local indices applied to a water network through demand and pressure driven analysis (DDA and PDA), Water, 12, 2210 (2020)
[8] Bonora, M.; Caldarola, F.; Maiolo, M.; Muranho, J.; Sousa, J., The new set up of local performance indices into WaterNetGen and applications to Santarèm’s network, Environmental Sciences Proceedings, 2, 1, 18 (2020)
[9] Bonora, M.; Caldarola, F.; Muranho, J.; Sousa, J.; Maiolo, M., Numerical experimentations for a new set of local indices of a water network, (Sergeyev, Y. D.; Kvasov, D. E., Proceedings of the 3rd International Conference. “Numerical Computations: Theory and Algorithms”. Proceedings of the 3rd International Conference. “Numerical Computations: Theory and Algorithms”, Lecture Notes in Computer Science, 11973 (2020), Springer: Springer Cham, Switzerland), 495-505 · Zbl 07249952
[10] Caldarola, F., The exact measures of the Sierpiński d-dimensional tetrahedron in connection with a Diophantine nonlinear system, Commun. Nonlinear Sci. Numer. Simul., 63, 228-238 (2018) · Zbl 07265242
[11] Caldarola, F., The Sierpiński curve viewed by numerical computations with infinities and infinitesimals, Appl. Math. Comput., 318, 321-328 (2018) · Zbl 1426.28016
[12] Caldarola, F.; Maiolo, M., Local indices within a mathematical framework for urban water distribution systems, Cogent. Eng., 6, 1643057 (2019)
[13] Caldarola, F.; Maiolo, M., Algebraic tools and new local indices for water networks: some numerical examples, (Sergeyev, Y.; Kvasov, D., Proceedings of the 3rd International Conference “Numerical Computations: Theory and Algorithms”. Proceedings of the 3rd International Conference “Numerical Computations: Theory and Algorithms”, Lecture Notes in Computer Science, 11973 (2020), Springer: Springer Cham, Switzerland), 517-524 · Zbl 07249954
[14] Caldarola, F.; Maiolo, M., On the topological convergence of multi-rule sequences of sets and fractal patterns, Soft Comput., 24, 17737-17749 (2020)
[15] Caldarola, F.; Maiolo, M.; Solferino, V., A new approach to the Z-transform through infinite computation, Commun. Nonlinear Sci. Numer. Simul., 82, 105019 (2020) · Zbl 1459.40007
[16] Dai, J.; Wu, S.; Han, G.; Weinberg, J.; Xie, X.; Wu, X.; Song, X.; Jia, B.; Xue, W.; Yang, Q., Water-energy nexus: a review of methods and tools for macro-assessment, Appl. Energy, 210, 393-408 (2018)
[17] D’Ambrosio, C.; Lodi, A.; Wiese, S.; Bragalli, C., Mathematical programming techniques in water network optimization, Eur. J. Oper. Res., 243, 774-788 (2015) · Zbl 1346.90211
[18] Di Nardo, A.; Di Natale, M., A heuristic design support methodology based on graph theory for district metering of water supply networks, Eng. Optim., 12, 193-211 (2011)
[19] Di Nardo, A.; Di Natale, M., A design support metodology for district metering of water supply networks, Water Distribution System Analysis 2010, 870-887 (2012)
[20] Di Nardo, A.; Di Natale, M.; Giudicianni, C.; Greco, R.; Santonastaso, G. F., Complex network and fractal theory for the assessment of water distribution network resilience to pipe failures, Water Sci. Technol.: Water Supply, 18, 767-777 (2017)
[21] Di Nardo, A.; Di Natale, M.; Giudicianni, C.; Musmarra, D.; Rodriguez Varela, J.; Santonastaso, G.; Simone, A.; Tzatchkov, V., Redundancy features of water distribution systems, Procedia Eng., 186, 412-419 (2017)
[22] Di Nardo, A.; Di Natale, M.; Santonastaso, G., A comparison between different techniques for water network sectorization, Water Sci. Technol.: Water Supply, 14, 961-970 (2014)
[23] Di Nardo, A.; Di Natale, M.; Santonastaso, G.; Tzatchkov, V.; Alcocer-Yamanaka, V., Performance indices for water network partitioning and sectorization, Water Sci. Technol.: Water Supply, 15, 499-509 (2014)
[24] Di Nardo, A.; Di Natale, M.; Santonastaso, G.; Tzatchkov, V.; Alcocer-Yamanaka, V., Water network sectorization based on graph theory and energy performance indices, J. Water Resour. Plan. Manag. Optim., 140, 620-629 (2014)
[25] Ferrari, G.; Savíc, D.; Becciu, G., Graph-theoretic approach and sound engineering principles for design of district metered areas, J. Water Resour. Plann. Manag., 140, 04014036 (2014)
[26] Harte, D., Multifractals (2001), Chapman & Hall: Chapman & Hall London · Zbl 1016.62111
[27] Herrera, M.; Abraham, E.; Stoianov, I., A graph-theoretic framework for assessing the resilience of sectorised water distribution networks, Water Resourour. Manag., 30, 1685-1699 (2016)
[28] Horn, R.; Johnson, C., Matrix Analysis (2012), Cambridge University Press: Cambridge University Press New York
[29] Maiolo, M.; Martirano, G.; Morrone, P.; Pantusa, D., Assessment criteria for a sustainable management of water resources, Water Pract. Technol., 1 (2006)
[30] Maiolo, M.; Mendicino, G.; Pantusa, D.; Senatore, A., Optimization of drinking water distribution systems in relation to the effects of climate change, Water, 9, 803 (2017)
[31] Maiolo, M.; Pantusa, D., A methodological proposal for the evaluation of potable water use risk, Water Pract. Technol., 10, 152-163 (2015)
[32] Maiolo, M.; Pantusa, D., An optimization procedure for the sustainable management of water resources, Water Sci. Technol.: Water Supply, 16, 61-69 (2016)
[33] Maiolo, M.; Pantusa, D., Combined reuse of wastewater and desalination for the management of water systems in conditions of scarcity, Water Ecol., 72, 116-126 (2017)
[34] Maiolo, M.; Pantusa, D., Infrastructure vulnerability index of drinking water supply systems to possible terrorist attacks, Cogent Eng., 5, 1456710 (2018)
[35] Maiolo, M.; Pantusa, D., A proposal for multiple reuse of urban wastewater, J. Water Reuse Desalination, 8, 468-478 (2018)
[36] Maiolo, M.; Pantusa, D., Sustainable water management index, SWaM_Index, Cogent Eng., 6, 1603817 (2019)
[37] Marques, J.; Cunha, M.; Savíc, D.; Giustolisi, O., Water network design using a multiobjective real options framework, J. Optim., 4373952 (2017) · Zbl 06918425
[38] Muranho, J.; Ferreira, A.; Sousa, J.; Gomes, A.; Sa Marques, A., WaterNetGen - an EPANET extension for automatic water distribution network models generation and pipe sizing, Water Sci. Technol.: Water Supply, 12, 117-123 (2012)
[39] 16th Conference on Water Distribution System Analysis, WDSA.
[40] Prasad, T.; Park, N.-S., Multiobjective genetic algorithms for design of water distribution networks, J. Water Resour. Plan. Manag., 130, 73-82 (2004)
[41] L.A. Rossman, EPANET 2: users manual, 2000.
[42] Sergeyev, Y. D., Arithmetic of Infinity (2003), Edizioni Orizzonti Meridionali: Edizioni Orizzonti Meridionali Cosenza · Zbl 1076.03048
[43] Sergeyev, Y. D., Blinking fractals and their quantitative analysis using infinite and infinitesimal numbers, Chaos Solit. Fract., 33, 1, 50-75 (2007)
[44] Sergeyev, Y. D., Lagrange Lecture: Methodology of numerical computations with infinities and infinitesimals, Rendiconti del Seminario Matematico dell’Università e del Politecnico di Torino, 68, 95-113 (2010) · Zbl 1211.65002
[45] Sergeyev, Y. D., Using blinking fractals for mathematical modelling of processes of growth in biological systems, Informatica, 22, 559-576 (2011) · Zbl 1268.37092
[46] Todini, E., Looped water distribution networks design using a resilience index based on heuristic approach, Urban Water, 12, 115-122 (2000)
[47] Veltri, M.; Veltri, P.; Maiolo, M., On the fractal description of natural channel networks, J. Hydrol., 187, 137-144 (1996)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.