×

Eulerian-Eulerian simulation of dusty gas flows past a prism from subsonic to supersonic regimes using a modal discontinuous Galerkin method. (English) Zbl 07426152

Summary: The present work investigates the bubble formation and vortex shedding phenomena in the viscous flow of a compressible gas seeded with dust particles. A new modal discontinuous Galerkin method was developed for solving the two-fluid model of dusty gas flows. Most previous studies have been limited to flows with low Mach numbers without the presence of shock waves. This study considered a wider Mach number range, from subsonic to supersonic, in the presence of shock waves. We also investigated in detail the effects of the presence of solid particles on flow properties such as bubble size and frequency and the amplitude of the Bérnard-von Kármán vortex street. A novel approach was employed to circumvent the non-strictly hyperbolic nature of the equations of the dusty-gas flow model caused by the non-existence of the pressure term. This allowed the same inviscid numerical flux functions to be applicable for both the gaseous Euler and solid pressureless-Euler systems. The simulation results revealed that the transition from stationary flow to unsteady flow is dependent on both the Reynolds and Mach numbers of the flow. Moreover, it was shown that in stark contrast with the pure gas case above the critical Reynolds number in the supersonic regime, where no flow instability was observed, in the multiphase flows, adding particles produced flow instability. This unusual behavior is because the two-way coupling effects between the gas phase and solid phase override the compressibility effect and cause severe flow instability and spontaneous symmetry breaking in the coherent dynamics of the vortices.

MSC:

76-XX Fluid mechanics
35-XX Partial differential equations

Software:

Ocellaris
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Davis, R. W.; Moore, E., A numerical study of vortex shedding from rectangles, J Fluid Mech, 116, 475-506 (1982) · Zbl 0491.76042
[2] Okajima, A., Strouhal numbers of rectangular cylinders, J Fluid Mech, 123, 379-398 (1982)
[3] Tamura, T.; Kuwahara, K., Numerical study of aerodynamic behavior of a square cylinder, Journal of Wind Engineering and Industrial Aerodynamics, 33, 161-170 (1990)
[4] Kelkar, K. M.; Patankar, S. V., Numerical prediction of vortex shedding behind a square cylinder, Int J Numer Methods Fluids, 14, 327-341 (1992) · Zbl 0746.76066
[5] Williamson, C. H., Vortex dynamics in the cylinder wake, Annu Rev Fluid Mech, 28, 477-539 (1996)
[6] Zdravkovich, M. M., Flow around circular cylinders: volume 2: applications (1997), Oxford university press · Zbl 0882.76004
[7] Lee, T., Early stages of an impulsively started unsteady flow past non-rectangular prisms, Comput Fluids, 27, 435-453 (1998) · Zbl 0977.76531
[8] Saha, A.; Biswas, G.; Muralidhar, K., Three-dimensional study of flow past a square cylinder at low Reynolds numbers, International Journal of Heat and Fluid Flow, 24, 54-66 (2003)
[9] Sharma, A.; Eswaran, V., Heat and fluid flow across a square cylinder in the two-dimensional laminar flow regime, Numerical Heat Transfer, Part A: Applications, 45, 247-269 (2004)
[10] Ahn, H. T., Hyperbolic cell-centered finite volume method for steady incompressible Navier-Stokes equations on unstructured grids, Comput Fluids, Article 104434 pp. (2020) · Zbl 07196638
[11] Cao, Y.; Tamura, T.; Kawai, H., Spanwise resolution requirements for the simulation of high-Reynolds-number flows past a square cylinder, Comput Fluids, 196, Article 104320 pp. (2020) · Zbl 07132268
[12] Jackson, C., A finite-element study of the onset of vortex shedding in flow past variously shaped bodies, J Fluid Mech, 182, 23-45 (1987) · Zbl 0639.76041
[13] Zielinska, B.; Wesfreid, J., On the spatial structure of global modes in wake flow, Physics of Fluids, 7, 1418-1424 (1995) · Zbl 1023.76521
[14] Goujon-Durand, S.; Jenffer, P.; Wesfreid, J., Downstream evolution of the Bénard-von Kármán instability, Physical Review E, 50, 308 (1994)
[15] Wesfreid, J.; Goujon-Durand, S.; Zielinska, B., Global mode behavior of the streamwise velocity in wakes, Journal de Physique II, 6, 1343-1357 (1996)
[16] Johansson, S. H.; Davidson, L.; Olsson, E., Numerical simulation of vortex shedding past triangular cylinders at high Reynolds number using a k-ε turbulence model, Int J Numer Methods Fluids, 16, 859-878 (1993) · Zbl 0775.76131
[17] De, A. K.; Dalal, A., Numerical simulation of unconfined flow past a triangular cylinder, Int J Numer Methods Fluids, 52, 801-821 (2006) · Zbl 1370.76123
[18] Prhashanna, A.; Sahu, A. K.; Chhabra, R., Flow of power-law fluids past an equilateral triangular cylinder: momentum and heat transfer characteristics, International Journal of Thermal Sciences, 50, 2027-2041 (2011)
[19] Chatterjee, D.; Mondal, B., Forced convection heat transfer from an equilateral triangular cylinder at low Reynolds numbers, Heat and Mass Transfer, 48, 1575-1587 (2012)
[20] Rahimi, A.; Ejtehadi, O.; Lee, K. H.; Myong, R. S., Near-field plume-surface interaction and regolith erosion and dispersal during the lunar landing, Acta Astronaut, 175, 308-326 (2020)
[21] Crowe, C. T.; Troutt, T. R.; Chung, J. N., Particle Interactions with Vortices, (Green, SI, Fluid vortices (1995), Springer Netherlands: Springer Netherlands Dordrecht), 829-861, editor
[22] Hunt, J., Industrial and environmental fluid mechanics, Annu Rev Fluid Mech, 23, 1-42 (1991)
[23] Saffman, P., On the stability of laminar flow of a dusty gas, J Fluid Mech, 13, 120-128 (1962) · Zbl 0105.39605
[24] Damseh, R. A., On boundary layer flow of a dusty gas from a horizontal circular cylinder, Brazilian Journal of Chemical Engineering, 27, 653-662 (2010)
[25] Mehrizi, A. A.; Farhadi, M.; Shayamehr, S., Natural convection flow of Cu-Water nanofluid in horizontal cylindrical annuli with inner triangular cylinder using lattice Boltzmann method, International Communications in Heat and Mass Transfer, 44, 147-156 (2013)
[26] Xu, J.; Zhang, J.; Wang, H.; Mi, J., Fine Particle Behavior in the Air Flow Past a Triangular Cylinder, Aerosol Science and Technology, 47, 875-884 (2013)
[27] Bai, B.; Li, X., Deposition of particles in the supersonic flow past a wedge, Powder Technol, 304, 268-273 (2016)
[28] Bassi, F.; Rebay, S., A high-order accurate discontinuous finite element method for the numerical solution of the compressible Navier-Stokes equations, J Comput Phys, 131, 267-279 (1997) · Zbl 0871.76040
[29] Cockburn, B.; Shu, C. W., The Runge-Kutta discontinuous Galerkin method for conservation laws V: multidimensional systems, J Comput Phys, 141, 199-224 (1998) · Zbl 0920.65059
[30] Zhang, X.; Shu, C. W., On positivity-preserving high order discontinuous Galerkin schemes for compressible Euler equations on rectangular meshes, J Comput Phys, 229, 8918-8934 (2010) · Zbl 1282.76128
[31] Zhang, X.; Xia, Y.; Shu, C. W., Maximum-principle-satisfying and positivity-preserving high order discontinuous Galerkin schemes for conservation laws on triangular meshes, J Sci Comput, 50, 29-62 (2012) · Zbl 1247.65131
[32] Franquet, E.; Perrier, V., Runge-Kutta discontinuous Galerkin method for reactive multiphase flows, Comput Fluids, 83, 157-163 (2013) · Zbl 1290.76159
[33] Kontzialis, K.; Ekaterinaris, J. A., High order discontinuous Galerkin discretizations with a new limiting approach and positivity preservation for strong moving shocks, Comput Fluids, 71, 98-112 (2013) · Zbl 1365.76120
[34] Xiao, H.; Myong, R., Computational simulations of microscale shock-vortex interaction using a mixed discontinuous Galerkin method, Comput Fluids, 105, 179-193 (2014) · Zbl 1391.76135
[35] Lu, H.; Zhu, J.; Wang, D.; Zhao, N., Runge-Kutta discontinuous Galerkin method with front tracking method for solving the compressible two-medium flow, Comput Fluids, 126, 1-11 (2016) · Zbl 1390.76335
[36] Coulette, D.; Franck, E.; Helluy, P.; Mehrenberger, M.; Navoret, L., High-order implicit palindromic discontinuous Galerkin method for kinetic-relaxation approximation, Comput Fluids, 190, 485-502 (2019) · Zbl 07083224
[37] Landet, T.; Mardal, K.-. A.; Mortensen, M., Slope limiting the velocity field in a discontinuous Galerkin divergence-free two-phase flow solver, Comput Fluids, 196, Article 104322 pp. (2020) · Zbl 07132269
[38] Ishii, R.; Umeda, Y.; Yuhi, M., Numerical analysis of gas-particle two-phase flows, J Fluid Mech, 203, 475-515 (1989)
[39] Kim, S. W.; Chang, K. S., Reflection of shock wave from a compression corner in a particle-laden gas region, Shock Waves, 1, 65-73 (1991) · Zbl 0806.76035
[40] Saito, T., Numerical analysis of dusty-gas flows, J Comput Phys, 176, 129-144 (2002) · Zbl 1120.76350
[41] Igra, O.; Hu, G.; Falcovitz, J.; Wang, B., Shock wave reflection from a wedge in a dusty gas, International Journal of Multiphase Flow, 30, 1139-1169 (2004) · Zbl 1136.76535
[42] Miura, H.; Glass, I. I., On a dusty-gas shock tube, Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 382, 373-388 (1982)
[43] Dobran, F.; Neri, A.; Macedonio, G., Numerical simulation of collapsing volcanic columns, Journal of Geophysical Research: Solid Earth, 98, 4231-4259 (1993)
[44] Ejtehadi, O.; Rahimi, A.; Karchani, A.; Myong, R., Complex wave patterns in dilute gas-particle flows based on a novel discontinuous Galerkin scheme, International Journal of Multiphase Flow, 104, 125-151 (2018)
[45] Zhang, X.; Shu, C. W., Positivity-preserving high order discontinuous Galerkin schemes for compressible Euler equations with source terms, J Comput Phys, 230, 1238-1248 (2011) · Zbl 1391.76375
[46] Zhang, X.; Shu, C. W., On maximum-principle-satisfying high order schemes for scalar conservation laws, J Comput Phys, 229, 3091-3120 (2010) · Zbl 1187.65096
[47] Barth, T. J.; Jespersen, D. C., The design and application of upwind schemes on unstructured meshes, (27th Aerospace Sciences Meeting: AIAA Paper 1989-0368 (1989))
[48] Powell, K. G.; Roe, P. L.; Myong, R. S.; Gombosi, T., An upwind scheme for magnetohydrodynamics, (12th Computational Fluid Dynamics Conference: AIAA Paper 1995-1704 (1995)) · Zbl 0900.76344
[49] Powell, K. G.; Roe, P. L.; Linde, T. J.; Gombosi, T. I.; De Zeeuw, D. L., A solution-adaptive upwind scheme for ideal magnetohydrodynamics, J Comput Phys, 154, 284-309 (1999) · Zbl 0952.76045
[50] Janhunen, P., A positive conservative method for magnetohydrodynamics based on HLL and Roe methods, J Comput Phys, 160, 649-661 (2000) · Zbl 0967.76061
[51] Jung, S.; Myong, R. S., A second-order positivity-preserving finite volume upwind scheme for air-mixed droplet flow in atmospheric icing, Comput Fluids, 86, 459-469 (2013) · Zbl 1290.76157
[52] van der Hoef, M. A.; Ye, M.; van Sint Annaland, M.; Andrews, A. T.; Sundaresan, S.; Kuipers, J. A.M., Multiscale Modeling of Gas-Fluidized Beds, Adv Chem Eng, 31, 65-149 (2006)
[53] Zeitoun, O.; Ali, M.; Nuhait, A., Convective heat transfer around a triangular cylinder in an air cross flow, Int J Ther Sci, 50, 1685-1697 (2011)
[54] Ejtehadi, O.; Rahimi, A.; Myong, R. S., Numerical investigation of the counter-intuitive behavior of Mach disk movement in underexpanded gas-particle jets, J Computat Fluid Eng, 24, 19-28 (2019)
[55] Ejtehadi, O.; Myong, R. S., A modal discontinuous Galerkin method for simulating dusty and granular gas flows in thermal non-equilibrium in the Eulerian framework, J Comput Phys, 411, Article 109410 pp. (2020) · Zbl 1436.76023
[56] Ejtehadi, O.; Rahimi, A.; Myong, R. S., Investigation of a trifold interaction mechanism of shock, vortex, and dust using a DG method in a two-fluid model framework, Powder Technol, 374, 121-138 (2020)
[57] Rusanov, V. V., Calculation of interaction of non-steady shock waves with obstacles: NRC, division of mechanical engineering (1962)
[58] Green, S., Fluid vortices (2012), Springer Science & Business Media
[59] Dušek, J.; Le Gal, P.; Fraunié, P., A numerical and theoretical study of the first Hopf bifurcation in a cylinder wake, J Fluid Mech, 264, 59-80 (1994) · Zbl 0813.76021
[60] Myong, R. S., A computational method for Eu’s generalized hydrodynamic equations of rarefied and microscale gasdynamics, J Comput Phys, 168, 47-72 (2001) · Zbl 1074.76573
[61] Myong, R. S., A generalized hydrodynamic computational model for rarefied and microscale diatomic gas flows, J Comput Phys, 195, 655-676 (2004) · Zbl 1115.76405
[62] Myong, R. S., Numerical simulation of hypersonic rarefied flows using the second-order constitutive model of the boltzmann equation (2018), Advances in Some Hypersonic Vehicles Technologies: InTech
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.