A fast, decomposed pressure correction method for an intrusive stochastic multiphase flow solver. (English) Zbl 07426219

Summary: Solution of the pressure Poisson equation is often the most expensive aspect of solving the incompressible form of Navier-Stokes. For a single phase deterministic model the pressure calculation is costly. Expanded to an intrusive stochastic multiphase framework, the simulation expense grows dramatically due to coupling between the stochastic pressure field and stochastic density. To address this issue in a deterministic framework, M. S. Dodd and A. Ferrante [J. Comput. Phys. 273, 416–434 (2014; Zbl 1351.76161)] discuss a decomposed pressure correction method which utilizes an estimated pressure field and constant density to modify the standard pressure correction method. The resulting method is useful for improving computational cost for one-fluid formulations of multiphase flow calculations. In this paper, we extend the decomposed pressure correction method to intrusive uncertainty quantification of multiphase flows. The work improves upon the original formulation by modifying the estimated pressure field. The new method is assessed in terms of accuracy and reduction in computational cost with oscillating droplet, damped surface wave, and atomizing jet test cases where we find convergence of results with the proposed method to those of a traditional pressure correction method and analytic solutions, where appropriate.


76-XX Fluid mechanics


Zbl 1351.76161


Full Text: DOI


[1] Metropolis, N.; Ulam, S., The Monte Carlo method, J Am Stat Assoc, 44, 247, 335-341 (1949) · Zbl 0033.28807
[2] Malik, M.; Zang, T.; Hussaini, M., A spectral collocation method for the Navier-Stokes equations, J Comput Phys, 61, 1, 64-88 (1985) · Zbl 0573.76036
[3] Hosder, S.; Walters, R.; Perez, R., A non-intrusive polynomial chaos method for uncertainty propagation in CFD simulations, 44th AIAA Aerospace sciences meeting and exhibit. aerospace sciences meetings (2006), American Institute of Aeronautics and Astronautics
[4] Wiener, N., The homogeneous chaos, Am J Math, 60, 4, 897-936 (1938) · JFM 64.0887.02
[5] Karhunen, K., Über lineare methoden in der wahrscheinlichkeitsrechnung, 37 (1947), Sana · Zbl 0030.16502
[6] Loeve M.. Probability theory: foundations, random sequences1955. · Zbl 0066.10903
[7] Le Maétre, O.; Knio, O. M.; Najm, H. N.; Ghanem, R. G., A stochastic projection method for fluid flow, J Comput Phys, 173, 2, 481-511 (2001) · Zbl 1051.76056
[8] http://search.ebscohost.com.proxybz.lib.montana.edu/login.aspx?direct=true&db=a9h&AN=8513921&login.asp&site=ehost-live · Zbl 1052.76057
[9] Xiu, D.; Karniadakis, G. E., Modeling uncertainty in flow simulations via generalized polynomial chaos, J Comput Phys, 187, 1, 137-167 (2003) · Zbl 1047.76111
[10] Sochala, P.; Le Maître, O., Polynomial chaos expansion for subsurface flows with uncertain soil parameters, Adv Water Resour, 62, 139-154 (2013)
[11] http://search.ebscohost.com.proxybz.lib.montana.edu/login.aspx?direct=true&db=a9h&AN=95251122&site=ehost-live · Zbl 1397.76027
[12] Turnquist, B.; Owkes, M., multiUQ: an intrusive uncertainty quantification tool for gas-liquid multiphase flows, J Comput Phys, 399, 108951 (2019) · Zbl 1453.76181
[13] Chorin, A. J., Numerical solution of the Navier-Stokes equations, Math Comput, 22, 104, 745-762 (1968) · Zbl 0198.50103
[14] Van Kan, J., A second-order accurate pressure-correction scheme for viscous incompressible flow, SIAM J Sci Stat Comput, 7, 3, 870-891 (1986) · Zbl 0594.76023
[15] Thomadakis, M.; Leschziner, M., A Pressure-correction method for the solution of incompressible viscous flows on unstructured grids, Int J Numer Methods Fluids, 22, 7, 581-601 (1996) · Zbl 0865.76069
[16] Dong, S.; Shen, J., A time-stepping scheme involving constant coefficient matrices for phase-field simulations of two-phase incompressible flows with large density ratios, J Comput Phys, 231, 17, 5788-5804 (2012) · Zbl 1277.76118
[17] Dodd, M. S.; Ferrante, A., A fast pressure-correction method for incompressible two-fluid flows, J Comput Phys, 273, 416-434 (2014) · Zbl 1351.76161
[18] Brackbill, J.; Kothe, D.; Zemach, C., A continuum method for modeling surface tension, J Comput Phys, 100, 2, 335-354 (1992) · Zbl 0775.76110
[19] Tryggvason, G.; Scardovelli, R.; Zaleski, S., Direct numerical simulations of gas-liquid multiphase flows (2011), Cambridge University Press · Zbl 1226.76001
[20] Chow, E.; Cleary, A.; Falgout, R., Design of the Hypre Preconditioner Library, Tech. Rep. (1998), Lawrence Livermore National Lab., CA (US)
[21] Cifani, P., Analysis of a constant-coefficient pressure equation method for fast computations of two-phase flows at high density ratios, J Comput Phys, 398, 108904 (2019) · Zbl 1453.76124
[22] Lord Rayleigh, F. R.S., VI. On the capillary phenomena of jets, Proc R Soc Lond, 29, 196-199, 71-97 (1879)
[23] Prosperetti, A., Motion of two superposed viscous fluids, Phys Fluids, 24, 7, 1217-1223 (1981) · Zbl 0469.76035
[24] Desjardins, O.; Moureau, V.; Pitsch, H., An accurate conservative level set/ghost fluid method for simulating turbulent atomization, J Comput Phys, 227, 18, 8395-8416 (2008) · Zbl 1256.76051
[25] Owkes, M.; Desjardins, O., A discontinuous Galerkin conservative level set scheme for interface capturing in multiphase flows, J Comput Phys, 249, 275-302 (2013) · Zbl 1427.76218
[26] Garrick, D. P.; Owkes, M.; Regele, J. D., A finite-volume HLLC-based scheme for compressible interfacial flows with surface tension, J Comput Phys, 339, 46-67 (2017) · Zbl 1375.76099
[27] Bellotti, T.; Theillard, M., A coupled level-set and reference map method for interface representation with applications to two-phase flows simulation, J Comput Phys, 392, 266-290 (2019) · Zbl 1452.76147
[28] Fyfe, D.; Oran, E.; Fritts, M., Surface tension and viscosity with lagrangian hydrodynamics on a triangular mesh, J Comput Phys, 76, 2, 349-384 (1988) · Zbl 0639.76043
[29] Salih A., Ghosh Moulic S.. Oscillation of a Liquid Drop in a Zero-Gravity Environment - A Benchmark Problem for Two-Phase Flow Computations. Roorkee, India; 2002,.
[30] Herrmann, M., A balanced force refined level set grid method for two-phase flows on unstructured flow solver grids, J Comput Phys, 227, 4, 2674-2706 (2008) · Zbl 1388.76252
[31] Popinet, S.; Zaleski, S., A front-tracking algorithm for accurate representation of surface tension, Int J Numer Methods Fluids, 30, 6, 775-793 (1999) · Zbl 0940.76047
[32] McCaslin, J. O.; Desjardins, O., A localized re-initialization equation for the conservative level set method, J Comput Phys, 262, 408-426 (2014) · Zbl 1349.76506
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.