The Taylor-Green vortex as a benchmark for high-fidelity combustion simulations using low-Mach solvers. (English) Zbl 07426240

Summary: Verification and validation are crucial steps for the development of any numerical model. While suitable processes have been established for commercial Computational Fluid Dynamics (CFD) codes, more difficult challenges must be faced for high-fidelity solvers. Benchmarks have been proposed in a series of dedicated conferences for non-reacting configurations. However, to our knowledge, no suitable approach has been proposed regarding turbulent reacting flows. The purpose of this article is to present a full verification and validation chain for high-resolution codes employed to simulate turbulent reacting flows, first for Direct Numerical Simulation (DNS) of combustion in the limit of low Mach numbers. The selected configuration builds on top of the Taylor-Green vortex. Verification takes place by comparison with the analytical solution in two dimensions. Validation of the single-component flow is ensured by comparisons with published results obtained with a pseudo-spectral code. Mixing without reaction is then considered, before computing finally a hydrogen-oxygen flame interacting with a 3-D Taylor-Green vortex. Three low-Mach number DNS solvers have been used for this study, demonstrating that the final accuracy of the simulations is of the order of 1% for all quantities considered. All data-sets are publicly available under [“The Taylor-Green vortex as a benchmark for high-fidelity combustion simulations using low-Mach solvers”, https://benchmark.coria-cfd.fr]. The performance of the codes is finally discussed, both in terms of single-node results and regarding parallel efficiency.


76-XX Fluid mechanics
Full Text: DOI


[1] The Taylor-Green vortex as a benchmark for high-fidelity combustion simulations using low-Mach solvers. https://benchmark.coria-cfd.fr.
[2] AIAA, Guide for the verification and validation of computational fluid dynamics simulations (1998), American Institute of Aeronautics and Astronautics, AIAA-G-077-1998: American Institute of Aeronautics and Astronautics, AIAA-G-077-1998 Reston, VA
[3] Best practice guidelines. ERCOFTAC special interest group on quality and trust in industrial CFD, (Casey, M.; Wintergerste, T. (2000), European Research Community on Flow, Turbulence and Combustion), available online unter https://www.ercoftac.org
[4] Best practice guidelines for computational fluid dynamics of dispersed multi-phase flows. European research community on flow, turbulence and combustion. Sommerfeld M, van Wachem B, Oliemans R, editors; 2008, available online unter https://www.ercoftac.org. ISBN 9163335646.
[5] Best practice guidelines for computational fluid dynamics of turbulent combustion, (Vervisch, L.; Roekaerts, D. (2016), European Research Community on Flow, Turbulence and Combustion: European Research Community on Flow, Turbulence and Combustion London), available online unter https://www.ercoftac.org
[6] Andersson, U.; Engström, T.; Gustavsson, L.; Karlsson, R., The turbine-99 workshops on draft tube flow – lessons learned, QNET-CFD Netw Newsl, 2, 17-21 (2003)
[7] Barlow R. International workshop on measurement and computation of turbulent flames. https://tnfworkshop.org. · JFM 17.0816.03
[8] Turbulent combustion of spray (TCS) series. http://www.tcs-workshop.org.
[9] Engine combustion network (ECN) series. https://ecn.sandia.gov/.
[10] Wang, Z.; Fidkowski, K.; Abgrall, R.; Bassi, F.; Caraeni, D.; Cary, A.; Deconinck, H.; Hartmann, R.; Hillewaert, K.; Huynh, H.; Kroll, N.; May, G.; Persson, P.-O.; van Leer, B.; Visbal, M., High-order CFD methods: current status and perspective, Int J Numer Meth Fluids, 72, 811-845 (2013) · Zbl 1455.76007
[11] Taylor, G.; Green, A., Mechanism of the production of small eddies from large ones, Proc R Soc A, 158, 499-521 (1937) · JFM 63.1358.03
[12] Shu, C.-W.; Don, W.-S.; Gottlieb, D.; Schilling, O.; Jameson, L., Numerical convergence study of nearly incompressible, inviscid Taylor-Green vortex flow, J Sci Comput, 24, 1, 1-27 (2005) · Zbl 1161.76535
[13] Krüger, T.; Varnik, F.; Raabe, D., Second-order convergence of the deviatoric stress tensor in the standard Bhatnagar-Gross-Krook lattice Boltzmann method, Phys Rev E, 82, 025701 (2010)
[14] Bull, J.; Jameson, A., Simulation of the Taylor-Green vortex using high-order flux reconstruction schemes, AIAA J, 53, 9, 2750-2761 (2015)
[15] Quéré, P. L.; Weisman, C.; Paillère, H.; Vierendeels, J.; Dick, E.; Becker, R., Modelling of natural convection flow with large temperature differences: a benchmark problem for low Mach number solvers. part 1: reference solutions, Math Model Numer Anal, 39, 609-616 (2005) · Zbl 1130.76047
[16] Thévenin, D.; Behrendt, F.; Maas, U.; Przywara, B.; Warnatz, J., Development of a parallel direct simulation code to investigate reactive flows, Comput Fluids, 25, 5, 485-496 (1996) · Zbl 0900.76349
[17] Direct numerical simulation for turbulent reacting flows, (Baritaud, T.; Poinsot, T.; Baum, M. (1996), TECHNIP)
[18] Cant, S., Direct numerical simulation of premixed turbulent flames, Philos Trans R Soc A, 357, 3583-3604 (1999) · Zbl 0965.80008
[19] Wu, Y.; Haworth, D.; Modest, M.; Cuenot, B., Direct numerical simulation of turbulence/radiation interaction in premixed combustion systems, Proc Combust Inst, 30(1), 639-646 (2005)
[20] Sankaran, R.; Hawkes, E.; Chen, J.; Lu, T.; Law, C., Direct numerical simulations of turbulent lean premixed combustion, J Phys, 46 (2006), 004/1-42
[21] Richardson, E.; Sankaran, R.; Grout, R.; Chen, J., Numerical analysis of reaction diffusion effects on species mixing rates in turbulent premixed methane air combustion, Combust Flame, 157, 506-515 (2010)
[22] Xia, J.; Luo, K., Direct numerical simulation study of evaporation effects in combustion suppression by inert droplets, Proc Combust Inst, 33, 2581-2590 (2011)
[23] Moureau, V.; Domingo, P.; Vervisch, L., Design of a massively parallel CFD code for complex geometries, Comptes Rendus Méc, 339, 2, 141-148 (2011), http://www.sciencedirect.com/science/article/pii/S1631072110002111 · Zbl 1217.76054
[24] di Mare, F.; Knappstein, R.; Baumann, M., Application of LES-quality criteria to internal combustion engine flows, Comput Fluids, 89, 200-213 (2014) · Zbl 1391.76213
[25] Trisjono, P.; Pitsch, H., Systematic analysis strategies for the development of combustion models from DNS: a review, Flow Turbul Combust, 95, 231-259 (2015)
[26] Abdelsamie, A.; Fru, G.; Dietzsch, F.; Janiga, G.; Thévenin, D., Towards direct numerical simulations of low-Mach number turbulent reacting and two-phase flows using immersed boundaries, Comput Fluids, 131, 5, 123-141 (2016) · Zbl 1390.76123
[27] Aspden, A.; Day, M.; Bell, J., Three-dimensional direct numerical simulation of turbulent lean premixed methane combustion with detailed kinetics, Combust Flame, 166, 266-283 (2016)
[28] Im, H., Direct numerical simulations for combustion science: past, present, and future, (De, S.; Agarwal, A.; Chaudhuri, S.; Sen, S., Modeling and simulation of turbulent combustion (2018), Springer: Springer Singapore)
[29] Ranade, R.; Echekki, T., A framework for data-based turbulent combustion closure: a posteriori validation, Combust Flame, 210, 279-291 (2019)
[30] Ihme, M., Requirements towards predictive simulations of turbulent combustion, AIAA scitech 2019 forum, AIAA 2019-0996, San Diego, CA (2019)
[31] Brachet, M.; Meiron, D.; Orszag, S.; Nickel, B.; Morf, R.; Frisch, U., The Taylor-Green vortex and fully developed turbulence, J Stat Phys, 34, 1049-1063 (1984)
[32] Zhou, H.; You, J.; Xiong, S.; Yang, Y.; Thévenin, D.; Chen, S., Interactions between the premixed flame front and the three-dimensional Taylor-Green vortex, Proc Combust Inst, 37, 2461-2468 (2019)
[33] Pitsch H.. Seventeeth International Conference on Numerical Combustion, 2019, Aachen. https://nc19.itv.rwth-aachen.de.
[34] Moureau V.. Yales2 public website. https://www.coria-cfd.fr/index.php/YALES2.
[35] Moureau, V.; Domingo, P.; Vervisch, L., From large-eddy simulation to direct numerical simulation of a lean premixed swirl flame: filtered laminar flame-pdf modeling, Combust Flame, 158, 7, 1340-1357 (2011)
[36] Benard, P.; Balarac, G.; Moureau, V.; Dobrzynski, C.; Lartigue, G.; D’Angelo, Y., Mesh adaptation for large-eddy simulations in complex geometries, Int J Numer Methods Fluids, 81, 719-740 (2015)
[37] Chorin, A., Numerical solution of the Navier-Stokes equations, Math Comput, 22, 104, 745-762 (1968) · Zbl 0198.50103
[38] Kraushaar, M., Application of the compressible and low-Mach number approaches to large-eddy simulation of turbulent flows in aero-engines (2011), PhD, Institut National Polytechnique de Toulouse-INPT, Ph.D. thesis
[39] Malandain, M.; Maheu, N.; Moureau, V., Optimization of the deflated conjugate gradient algorithm for the solving of elliptic equations on massively parallel machines, J Comput Phys, 238, 32-47 (2013)
[40] Pierce, C.; Moin, P., Progress-variable approach for large-eddy simulation of non-premixed turbulent combustion, J Fluid Mech, 504, 73-97 (2004) · Zbl 1116.76374
[41] Goodwin, D., An open-source, extensible software suite for CVD process simulation, Chem Vapor Depos XVI EUROCVD, 14, 2003-2008 (2003)
[42] Hirschfelder, J.; Bird, R.; Curtiss, C., Molecular theory of gases and liquids (1964), Wiley · Zbl 0057.23402
[43] Sutherland, W., LII. The viscosity of gases and molecular force, Lond Edinb Dublin Philos Mag J Sci, 36, 223, 507-531 (1893) · JFM 25.1544.01
[44] Cohen, S.; Hindmarsh, A.; Dubois, P., CVODE, a stiff/nonstiff ODE solver in C, Comput Phys, 10, 2, 138-143 (1996)
[45] Hindmarsh A., Serban R.. User documentation for CVODE. https://computing.llnl.gov/sites/default/files/public/cv_guide.pdf.
[46] Hindmarsh, A.; Brown, P.; Grant, K.; Lee, S.; Serban, R.; Shumaker, D., SUNDIALS: suite of nonlinear and differential/algebraic equation solvers, ACM Trans Math Soft (TOMS), 31, 3, 363-396 (2005) · Zbl 1136.65329
[47] Li, N.; Laizet, S., 2DECOMP&FFT - a highly scalable 2D decomposition library and FFT interface, Cray user’s group 2010 conference, Edinburgh (2010)
[48] Niemeyer K., Curtis N.. pyJac v1.0.6. 2018. https://github.com/slackha/pyJac, 10.5281/zenodo.1182789.
[49] Goodwin D., Speth R., Moffat H., Weber B.. Cantera: an object-oriented software toolkit for chemical kinetics, thermodynamics, and transport processes. 2018. https://www.cantera.org Version
[50] Ern, A.; Giovangigli, V., Fast and accurate multicomponent transport property evaluation, J Comput Phys, 120, 105-116 (1995) · Zbl 0938.76097
[51] Abdelsamie, A.; Thévenin, D., On the behavior of spray combustion in a turbulent spatially-evolving jet investigated by direct numerical simulation, Proc Combust Inst, 37, 3, 2493-2502 (2019)
[52] Abdelsamie, A.; Thévenin, D., Nanoparticle behavior and formation in turbulent spray flames investigated by DNS, (García-Villalba, M.; Kuerten, H.; Salvetti, M., Direct and large eddy simulation XII. Direct and large eddy simulation XII, ERCOFTAC Series, 27 (2020), Springer)
[53] Chi, C.; Abdelsamie, A.; Thévenin, D., A directional ghost-cell immersed boundary method for incompressible flows, J Comput Phys, 404, 109122-109142 (2020) · Zbl 1453.76123
[54] Chi, C.; Janiga, G.; Abdelsamie, A.; Zähringer, K.; Turányi, T.; Thévenin, D., DNS study of the optimal chemical markers for heat release in syngas flames, Flow Turbul Combust, 98, 4, 1117-1132 (2017)
[55] Oster, T.; Abdelsamie, A.; Motejat, M.; Gerrits, T.; Rössl, C.; Thévenin, D.; Theisel, H., On the fly tracking of flame surfaces for the visual analysis of combustion processes, Comput Graph Forum, 37, 6, 358-369 (2018)
[56] Chi, C.; Abdelsamie, A.; Thévenin, D., Direct numerical simulations of hotspot-induced ignition in homogeneous hydrogen-air pre-mixtures and ignition spot tracking, Flow Turbul Combust, 101, 1, 103-121 (2018)
[57] Abdelsamie, A.; Thévenin, D., Impact of scalar dissipation rate on turbulent spray combustion investigated by DNS, (Salvetti, M.; Armenio, V.; Fröhlich, J.; Geurts, B.; Kuerten, H., Direct and large-eddy simulation XI. Direct and large-eddy simulation XI, ERCOFTAC Series, vol. 25 (2019), Springer)
[58] Abdelsamie, A.; Kruis, F.; Wiggers, H.; Thévenin, D., Nanoparticle formation and behavior in turbulent spray flames investigated by DNS, Flow Turbul Combust, 105, 497-516 (2020)
[59] Abdelsamie, A.; Chi, C.; Nanjaiah, M.; Skenderović, I.; Suleiman, S.; Thévenin, D., Direct numerical simulation of turbulent spray combustion in the spraysyn burner: impact of injector geometry, Flow Turbul Combust, 106, 453-469 (2021)
[60] Hosseini, S.; Abdelsamie, A.; Darabiha, N.; Thévenin, D., Low-Mach hybrid lattice Boltzmann-finite difference solver for combustion in complex flows, Phys Fluids, 32, 077105 (2020)
[61] Nek5000 version v17.0. http://nek5000.mcs.anl.gov Argonne National Laboratory, IL, U.S.A.
[62] Tomboulides, A.; Lee, J.; Orszag, S., Numerical simulation of low Mach number reactive flows, J Sci Comput, 12, 139-167 (1997) · Zbl 0905.76055
[63] Patera, A., A spectral element method for fluid dynamics: laminar flow in a channel expansion, J Comput Phys, 54, 3, 468-488 (1984) · Zbl 0535.76035
[64] Deville, M.; Fischer, P.; Mund, E., High-order methods for incompressible fluid flows (2002), Cambridge University Press · Zbl 1007.76001
[65] Tanarro, A.; Mallor, F.; Offermans, N.; Peplinski, A.; Vinuesa, R.; Schlatter, P., Enabling adaptive mesh refinement for spectral-element simulations of turbulence around wing sections, Flow Turbul Combust, 105, 2, 415-436 (2020)
[66] Tomboulides, A.; Orszag, S., A quasi-two-dimensional benchmark problem for low Mach number compressible codes, J Comput Phys, 146, 691-706 (1998) · Zbl 0913.76060
[67] Kee R., Rupley F., Miller J.. Chemkin-II: a Fortran chemical kinetics package for the analysis of gas-phase chemical kinetics. SAND-89-80091989;.
[68] Schmitt, M.; Frouzakis, C.; Tomboulides, A.; Wright, Y.; Boulouchos, K., Direct numerical simulation of the effect of compression on the flow, temperature and composition under engine-like conditions, Proc Combust Inst, 35, 3069-3077 (2015)
[69] Giannakopoulos, G.; Frouzakis, C.; Fischer, P.; Tomboulides, A.; Boulouchos, K., LES of the gas-exchange process inside an internal combustion engine using a high-order method, Flow Turbul Combust, 104, 673-692 (2020)
[70] Brambilla, A.; Frouzakis, C.; Mantzaras, J.; Tomboulides, A.; Kerkemeir, S.; Boulouchos, K., Detailed transient numerical simulation of H2/air hetero-/homogeneous combustion in platinum-coated channels with conjugate heat transfer, Combust Flame, 161(10), 2692-2707 (2014)
[71] Arani, B.; Frouzakis, C.; Mantzaras, J.; Boulouchos, K., Three-dimensional direct numerical simulations of turbulent fuel-lean \(H{}_2\)/air hetero-/homogeneous combustion over pt with detailed chemistry, Proc Combust Inst, 36(3), 4355-4363 (2017)
[72] Laizet, S.; Lamballais, E., High-order compact schemes for incompressible flows: a simple and efficient method with quasi-spectral accuracy, J Comput Phys, 228, 5989-6015 (2009) · Zbl 1185.76823
[73] van Rees, W.; Leonard, A.; Pullin, D.; Koumoutsakos, P., A comparison of vortex and pseudo-spectral methods for the simulation of periodic vortical flows at high Reynolds numbers, J Comput Phys, 230, 2794-2805 (2011) · Zbl 1316.76066
[74] 1st international workshop on high-order CFD methods, at the 50th AIAA aerospace sciences meeting. January 7-8, 2012, Nashville, Tennessee, https://cfd.ku.edu/hiocfd.html.
[75] Boivin, P.; Jiménez, C.; Sánchez, A.; Williams, F., An explicit reduced mechanism for \(H{}_2\)-air combustion, Proc Combust Inst, 33, 517-523 (2011)
[76] Hilbert, R.; Tap, F.; El-Rabii, H.; Thévenin, D., Impact of detailed chemistry and transport models on turbulent combustion simulations, Prog Energy Combust Sci, 30, 61-117 (2004)
[77] Motheau, E.; Abraham, J., A high-order numerical algorithm for DNS of low-Mach-number reactive flows with detailed chemistry and quasi-spectral accuracy, J Comput Phys, 313, 430-454 (2016) · Zbl 1349.65324
[78] Ferziger, J.; Perić, M., Computational methods for fluid dynamics (2012), Springer · Zbl 0869.76003
[79] Celik, I.; Ghia, U.; Roache, P.; Freitas, C.; Coleman, H.; Raad, P., Procedure for estimation and reporting of uncertainty due to discretization in CFD applications, J Fluids Eng, 130, 078001 (2008)
[80] IPACS (Integrated Performance Analysis of Computer Systems). Taubench: an unstructured grid benchmark.
[81] IPACS. The IPACS-project at a glance IPACS benchmark suite, performance modeling and prediction methods, benchmarking environment. https://www.researchgate.net/publication/228908352_The_IPACS-Project_at_Glance-IPACS_Benchmark_Suite_Performance_Modeling_and_Prediction_Methods_Benchmarking_Environment.
[82] Irene Joliot-Curie machine from TGCC. http://www-hpc.cea.fr/fr/complexe/tgcc-Irene.html.
[83] SuperMUC-NG machine from LRZ. https://doku.lrz.de/display/PUBLIC/SuperMUC-NG.
[84] Piz Daint machine from CSCS. https://www.cscs.ch/computers/piz-daint.
[85] Schwamborn, D.; Gerhold, T.; Heinrich, R., The DLR TAU-code: Recent applications in research and industry, ECCOMAS CFD 2006 CONFERENCE (2006), https://elib.dlr.de/22421/
[86] LINPACK benchmark. https://en.wikipedia.org/wiki/LINPACK_benchmarks. · Zbl 1115.68041
[87] Dongarra, J.; Heroux, M.; Luszczek, P., High-performance conjugate-gradient benchmark: a new metric for ranking high-performance computing systems, Int J High Perform Comput Appl, 30, 1, 8 (2015), https://www.hpcg-benchmark.org/index.html
[88] Rank of Irene Joliot-Curie machine from TGCC. https://www.top500.org/system/179411.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.