×

A modeling study of predator-prey interaction propounding honest signals and cues. (English) Zbl 1481.92097

Summary: Honest signals and cues have been observed as part of interspecific and intraspecific communication among animals. Recent theories suggest that existing signaling systems have evolved through natural selection imposed by predators. Honest signaling in the interspecific communication can provide insight into the evolution of anti-predation techniques. In this work, we introduce a deterministic three-stage, two-species predator-prey model, which modulates the impact of honest signals and cues on the interacting populations. The model is built from a set of first principles originated from signaling and social learning theory in which the response of predators to transmitted honest signals or cues is determined. The predators then use the signals to decide whether to pursue the attack or save their energy for an easier catch. Other members from the prey population that are not familiar with signaling their fitness observe and learn the technique. Our numerical bifurcation analysis indicates that increasing the predator’s search rate and the corresponding assimilation efficiency gives a journey from predator-prey abundance and scarcity, a stable transient cycle between persistence and near-extinction, a homoclinic orbit pointing towards extinction, and ultimately, a quasi-periodic orbit. A similar discovery is met under the increment of the prey’s intrinsic birth rate and carrying capacity. When both parameters are of sufficiently large magnitudes, the separator between honest signal and cue takes the similar journey from a stable equilibrium to a quasi-periodic orbit as it increases. In the context of modeling, we conclude that under prey abundance, transmitting error-free honest signals leads to not only a stable but also more predictable predator-prey dynamics.

MSC:

92D25 Population dynamics (general)
34C60 Qualitative investigation and simulation of ordinary differential equation models

Software:

HomCont; AUTO; COCO; MATCONT
PDF BibTeX XML Cite
Full Text: DOI arXiv

References:

[1] Owren, M. J.; Rendall, D.; Ryan, M. J., Redefining animal signaling: influence versus information in communication, Biol. Philos., 25, 5, 755-780 (2010)
[2] Smith, W. J., The behavior of communicating, after twenty years, (Owings, D. H.; Beecher, M. D.; Thompson, N. S., Perspectives in Ethology (1997), Springer US: Springer US Boston, MA)
[3] Hauser, M. D., The Evolution of Communication (1996), MIT press: MIT press Cambridge, MA
[4] Bugnyar, T.; Kijne, M.; Kotrschal, K., Food calling in ravens: are yells referential signals?, Anim. Behav., 61, 5, 949-958 (2001)
[5] Lehmann, K. D.; Goldman, B. W.; Dworkin, I.; Bryson, D. M.; Wagner, A. P., From cues to signals: evolution of interspecific communication via aposematism and mimicry in a predator-prey system, PLoS One, 9, 3, e91783-8 (2014)
[6] Johnstone, R. A.; Grafen, A., The continuous sir philip sidney game: a simple model of biological signalling, J. Theor. Biol., 156, 2, 215-234 (1992)
[7] Leal, M., Honest signalling during prey-predator interactions in the lizard Anolis cristatellus, Anim. Behav., 58, 3, 521-526 (1999)
[8] Zahavi, A., Mate selection a selection for a handicap, J. Theor. Biol., 53, 1, 205-214 (1975)
[9] Zahavi, A., The cost of honesty (further remarks on the handicap principle), J. Theor. Biol., 67, 3, 603-605 (1977)
[10] Zahavi, A., The theory of signal selection and some of its implications, Int. Symp. Biol. Evol., 305-327 (1987)
[11] Dawkins, R.; Krebs, J. R., Animal signals: information or manipulation, Behav. Ecol., 2, 282-309 (1978)
[12] Krebs, J.; Dawkins, R.; Davies, N., Behavioral Ecology: an Integrated Approach (1984), Blackwell Scientific: Blackwell Scientific Oxford
[13] Zahavi, A.; Zahavi, A., The Handicap Principle: a Missing Piece of Darwin’s Puzzle (1999), Oxford University Press: Oxford University Press Oxford, UK
[14] Grafen, A., Biological signals as handicaps, J. Theor. Biol., 144, 4, 517-546 (1990)
[15] Számadó, S.; Penn, D. J., Why does costly signalling evolve? Challenges with testing the handicap hypothesis, Anim. Behav., 110, e9-4 (2015)
[16] Bergstrom, C. T.; Számadó, S.; Lachmann, M., Separating equilibria in continuous signalling games, Philos. Trans. R. Soc. Lond. Ser. B, 357, 1427, 1595-1606 (2002)
[17] Getty, T., Handicap signalling: when fecundity and viability do not add up, Anim. Behav., 56, 1, 127-130 (1998)
[18] Getty, T., Sexually selected signals are not similar to sports handicaps, Trends Ecol. Evol., 21, 2, 83-88 (2006)
[19] Lachmann, M.; Szamado, S.; Bergstrom, C. T., Cost and conflict in animal signals and human language, Proc. Natl. Acad. Sci., 98, 23, 13189-13194 (2001)
[20] Számadó, S., The cost of honesty and the fallacy of the handicap principle, Anim. Behav., 81, 1, 3-10 (2011)
[21] 20132457-8
[22] 20161970-6
[23] Hasson, O., Towards a general theory of biological signaling, J. Theor. Biol., 185, 2, 139-156 (1997)
[24] Johnstone, R. A.; Grafen, A., Error-prone signalling, Proc. R. Soc. Lond. Ser.B, 248, 1323, 229-233 (1992)
[25] Johnstone, R. A., Honest signalling, perceptual error and the evolution of ‘all-or-nothing’displays, Proc. R. Soc. Lond. Ser.B, 256, 1346, 169-175 (1994)
[26] Smith, J. M.; Harper, D., Animal Signals (2003), Oxford University Press: Oxford University Press Oxford, UK
[27] Laidre, M. E.; Johnstone, R. A., Animal signals, Curr. Biol., 23, 18, R829-R833 (2013)
[28] Rendall, D.; Owren, M. J.; Ryan, M. J., What do animal signals mean?, Anim. Behav., 78, 2, 233-240 (2009)
[29] Holling, C. S., The components of predation as revealed by a study of small-mammal predation of the European pine sawfly, Can. Entomol., 91, 5, 293-320 (1959)
[30] Jeschke, J. M.; Kopp, M.; Tollrian, R., Predator functional responses: discriminating between handling and digesting prey, Ecol. Monogr., 72, 1, 95-112 (2002)
[31] Smith, M. J.; Harper, D. G., Animal signals: models and terminology, J. Theor. Biol., 177, 3, 305-311 (1995)
[32] FitzGibbon, C. D.; Fanshawe, J. H., Stotting in Thomson’s gazelles: an honest signal of condition, Behav. Ecol. Sociobiol., 23, 2, 69-74 (1988)
[33] Wiebe, K. L., Innate and learned components of defence by flickers against a novel nest competitor, the European starling, Ethology, 110, 779-791 (2004)
[34] Goth, A., Innate predator-recognition in Australian brush-turkey (Alectura lathami, Megapodiidae) hatchlings, Behaviour, 138, 117-136 (2001)
[35] Berejikian, B. A.; Tezaka, E. P.; LaRaeb, A. L., Innate and enhanced predator recognition in hatchery-reared chinook salmon, Environ. Biol. Fishes, 67, 241-251 (2003)
[36] Fendt, M., Exposure to urine of canids and felids, but not of herbivores, induces defensive behavior in laboratory rats, J. Chem. Ecol., 32, 2617-2627 (2006)
[37] Csányi, V.; Dóka, A., Learning interactions between prey and predator fish, Mar. Freshw. Behav. Phys., 23, 1-4, 63-78 (1993)
[38] Brown, C.; Laland, K. N., Social learning in fishes: a review, Fish Fish., 4, 3, 280-288 (2003)
[39] Boyd, R.; Richerson, P. J., Culture and the Evolutionary Process (1988), University of Chicago press, Chicago US
[40] Weinstock, M., The long-term behavioural consequences of prenatal stress, Neurosci. Biobehav. Rev., 32, 1073-1086 (2008)
[41] Schoech, S. J.; Rensel, M. A.; Heiss, R. S., Short and long-term effects of developmental corticosterone exposure on avian physiology, behavioral phenotype, cognition, and fitness: review, Curr. Zool., 57, 4, 514-530 (2011)
[42] Maccari, S.; Krugers, H. J.; Morley-Fletcher, S.; Szyf, M.; Brunton, P. J., The consequences of early-life adversity: neurobiological, behavioural and epigenetic adaptations, J. Neuroendocrinol., 26, 707-723 (2014)
[43] Crandall, M. G.; Rabinowitz, P. H., Mathematical theory of bifurcation, (Bardos, C.; Bessis, D., Bifurcation Phenomena in Mathematical Physics and Related Topics (1980), Springer: Springer Netherlands, Dordrecht), 3-46
[44] Rabinowitz, P. H., Some global results for nonlinear eigenvalue problems, J. Funct. Anal., 7, 3, 487-513 (1971) · Zbl 0212.16504
[45] Golubitsky, M.; Schaeffer, D. G., Singularities and Groups in Bifurcation Theory, I (1985), Springer-Verlag: Springer-Verlag New York · Zbl 0607.35004
[46] Ma, T.; Wang, S., Bifurcation theory and applications, volume 53 of World Scientific Series on Nonlinear Science A (2005), World Scientific Publishing: World Scientific Publishing Singapore
[47] Krasnoselskii, M.; Zabreiko, P., Geometrical Methods of Nonlinear Analysis (1984), Springer-Verlag: Springer-Verlag Berlin Heidelberg
[48] Cushing, J. M., An introduction to structured population dynamics, CBMS-NSF Conference Series in Applied Mathematics (1988), Society for Industrial and Applied Mathematics: Society for Industrial and Applied Mathematics Philadelphia · Zbl 0939.92026
[49] Wijaya, K. P.; Soewono, S. E.; Götz, T., On the existence of a nontrivial equilibrium in relation to the basic reproductive number, J. Appl. Math. Comput. Sci., 27, 3, 623-636 (2017) · Zbl 1373.93143
[50] Dankowicz, H.; Schilder, F., Recipes for continuation, Computational Science and Engineering (2013), SIAM: SIAM Philadelphia · Zbl 1277.65037
[51] E.J. Doedel, A.R. Champneys, T.F. Fairgrieve, Y.A. Kuznetsov, B. Sandstede, X.-J. Wang, Auto97: continuation and bifurcation software for ordinary differential equations (with HomCont), Computer Science, Concordia University, Montreal, Canada, 1997.
[52] Dhooge, A.; Govaerts, W.; Kuznetsov, Y. A., MATCONT: a MATLAB package for numerical bifurcation analysis of ODEs, ACM Trans. Math. Softw., 29, 2, 141-164 (2003) · Zbl 1070.65574
[53] Fourth printing.vv
[54] Govaerts, W., Numerical Methods for Bifurcations of Dynamical Equilibria (2000), SIAM: SIAM Philadelphia · Zbl 0935.37054
[55] Kribs-Zaleta, C. M.; Velasco-Hernández, J. X., A simple vaccination model with multiple endemic states, Math. Biosci., 164, 2, 183-201 (2000) · Zbl 0954.92023
[56] van den Driessche, P.; Watmough, J., A simple SIS epidemic model with a backward bifurcation, J. Math. Biol., 40, 6, 525-540 (2000) · Zbl 0961.92029
[57] Liu, M.; Liz, E.; Röst, G., Endemic bubbles generated by delayed behavioral response: global stability and bifurcation switches in an SIS model, SIAM J. Appl. Math., 75, 1, 75-91 (2015) · Zbl 1328.34085
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.