zbMATH — the first resource for mathematics

Cohomology of regular embeddings. (English) Zbl 0743.14018
For algebraic symmetric spaces a good theory of embeddings has been developed by the last two authors having in mind applications to classical enumerative geometry. Here we compute the cohomology by first computing equivariant cohomology.
The results generalize both the theory of toric varieties and that of the flag varieties.
Reviewer: C.Procesi

14F25 Classical real and complex (co)homology in algebraic geometry
14E25 Embeddings in algebraic geometry
14M17 Homogeneous spaces and generalizations
14M25 Toric varieties, Newton polyhedra, Okounkov bodies
14M15 Grassmannians, Schubert varieties, flag manifolds
Full Text: DOI
[1] Atiyah, M. F., Convexity and commuting Hamiltonians, Bull. London Math. Soc., 14, 1-15 (1982) · Zbl 0482.58013
[2] Atiyah, M. F.; Bott, R., The Yang-Mills equations over Riemann surfaces, Philos. Trans. Roy. Soc. London Ser. A, 308, 523-615 (1982) · Zbl 0509.14014
[3] Atiyah, M. F.; Bott, R., The moment map and equivariant cohomology, Topology, 23, 1-28 (1984) · Zbl 0521.58025
[4] Bialynicki-Birula, A., Some theorems on actions of algebraic groups, Ann. of Math., 98, 480-497 (1973) · Zbl 0275.14007
[5] Bialynicki-Birula, A., On fixed points of torus actions on projective varieties, Bull. Adad. Polon. Sci. Sér. Sci. Math. Astron. Phys., 22, 1097-1101 (1974) · Zbl 0316.14017
[6] Bialynicki-Birula, A., Some properties of the decomposition of algebraic varieties determined by actions of a torus, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astron. Phys., 24, 667-674 (1976) · Zbl 0355.14015
[7] Adv. in Math., 80, 225-249 (1990) · Zbl 0714.14032
[8] Borel, A., (Seminar on transformation groups. Seminar on transformation groups, Ann. of Math. Stud., Vol. 46 (1961), Princeton Univ. Press: Princeton Univ. Press Princeton, NJ)
[9] De Concini, C.; Goresky, M.; MacPherson, R.; Procesi, C., On the geometry of quadrics and their degenerations, Comment. Math. Helv., 63, 337-413 (1988) · Zbl 0693.14023
[10] De Concini, C.; Procesi, C., Complete symmetric varieties, (Invariant Theory. Invariant Theory, Springer Lecture Notes in Mathematics, Vol. 996 (1983), Springer-Verlag: Springer-Verlag Berlin), 1-44 · Zbl 0581.14041
[11] De Concini, C.; Procesi, C., Complete symmetric varieties II, Algebraic groups and related topics, Adv. Stud. Pure Math., 6, 481-513 (1985)
[12] De Concini, C.; Procesi, C., Cohomology of compactifications of algebraic groups, Duke Math. J., 58, 585-594 (1986) · Zbl 0614.14013
[14] Flensted-Jensen, M., Spherical functions on a real semisimple Lie group: A method of reduction to the complex case, J. Funct. Anal., 30, 106-146 (1978) · Zbl 0419.22019
[15] Guillemin, V.; Sternberg, S., Convexity properties of the moment map, Invent. Math., 67, 491-513 (1982) · Zbl 0503.58017
[16] Helgason, S., Differential Geometry, Lie Groups and Symmetric Spaces (1978), Academic Press: Academic Press New York · Zbl 0451.53038
[17] Hsiang, W., Cohomology Theory of Topological Transformation Groups (1975), Springer-Verlag: Springer-Verlag Berlin · Zbl 0429.57011
[18] Kirwan, F. C., Cohomology of quotients in symplectic and algebraic geometry, (Math. Notes, Vol. 31 (1984), Princeton Univ. Press: Princeton Univ. Press Princeton, NJ) · Zbl 0553.14020
[19] Ness, L., A stratification of the null cone via the moment map, Amer. J. Math., 106, 1281-1329 (1984) · Zbl 0604.14006
[20] Oda, T., Convex Bodies and Algebraic Geometry (An Introduction to the Theory of Toric Varieties) (1987), Springer-Verlag: Springer-Verlag Berlin
[21] Rossmann, W., The structure of semisimple symmetric spaces, Canad. J. Math., 31, 157-180 (1979) · Zbl 0357.53033
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.