×

Moduli and classification of irregular Kaehler manifolds (and algebraic varieties) with Albanese general type fibrations. Appendix by Arnaud Beauville. (English) Zbl 0743.32025

The central concern of this paper is the development of a higher dimensional analogue of the remarkable fact that the existence of a pencil of genus \(\geq 2\) on a compact complex surface \(S\) is a topological property of \(S\). More precisely, let \(X\) be an irregular compact Kähler manifold of dimension n and \(\alpha: X\to\text{Alb}(X)\) the Albanese morphism. The author defines \(X\) to be of Albanese general type if the image of \(\alpha\) has dimension n but \(\alpha\) is not surjective; it is easy to see that this property depends only on the complex cohomology of \(X\). The main result concerns morphisms \(f: X\to Y\), where \(X\) is an irregular compact Kähler manifold and \(Y\) is normal, of dimension \(k<n\), and has a smooth model which is of Albanese general type; it states that there is a bijection between the set of such morphisms and a certain set of real subspaces of \(H^ 1(X;\mathbb{C})\) (namely the saturated \(2k\)-wedge subspaces).
In later sections, the author gives applications to moduli of algebraic surfaces and considers the problem of stability under deformations of the existence of irrational pencils and higher dimensional analogues.
{For a fuller discussion of the motivation, ideas and methods of this interesting paper, see the author’s excellent introduction.}.

MSC:

32J27 Compact Kähler manifolds: generalizations, classification
32G13 Complex-analytic moduli problems
14C30 Transcendental methods, Hodge theory (algebro-geometric aspects)
53C55 Global differential geometry of Hermitian and Kählerian manifolds
14D20 Algebraic moduli problems, moduli of vector bundles
14J15 Moduli, classification: analytic theory; relations with modular forms
PDFBibTeX XMLCite
Full Text: DOI EuDML

References:

[1] [Ara] Arakelov, S.J.: Families of algebraic curves with fixed degeneracies. Math. USSR, Izv.5, 1277?1302 (1971) · Zbl 0248.14004 · doi:10.1070/IM1971v005n06ABEH001235
[2] [At] Atiyah, M.F.: Vector bundles over an elliptic curve. Proc. Lond. Math. Soc., III. Scr.7, 414?452 (1957) · Zbl 0084.17305 · doi:10.1112/plms/s3-7.1.414
[3] [Be1] Beauville, A.: Surfaces algébriques complexes. Asterisque54 (1978)
[4] [Be2] Beauville, A.: Annullation duH 1 et systemes paracanoniques sur les surfaces. Crelle Jour.388, 149?157 (1988)
[5] [Be3] Beauville, A.: L’inégalitép g?2q-4 pour les surfaces de type général. Bull. Soc. Math. Fr.110, 344?346 (1982)
[6] [Bog] Bogomolov, F.: Holomorphic tensors and vector bundles on projective varieties. Math. USSR, Izv.13, 499?555 (1979) · Zbl 0439.14002 · doi:10.1070/IM1979v013n03ABEH002076
[7] [Bo] Bombieri, E.: Canonical models of surfaces of general type. Publ. Math. I.H.E.S.42, 171?219 (1973) · Zbl 0259.14005 · doi:10.1007/BF02685880
[8] [BPV] Barth, W., Peters, C., Van de Ven, A.: Compact complex surfaces. Ergeb. Math. Grenzgeb. 1984
[9] [Cas1] Castelnuovo, G.: Sulle superficie aventi il genere aritmetico negativo. Rend. Circ. Math. Palermo20, 55?60 (1905) · JFM 36.0696.02 · doi:10.1007/BF03014028
[10] [Cas2] Castelnuovo, G.: Sul numero dei moduli di una superficie irregolare. I, II, Rend. Acc. Lincei7, 3?7, 8?11 (1949) · Zbl 0035.37201
[11] [Ca1] Catanese, F.: On the moduli spaces of surfaces of general type. J. Differ. Geom.19, 483?515 (1984)
[12] [Ca2] Catanese, F.: Moduli of surfaces of general type. In: Algebraic Geometry Open Problems. Proceedings Ravello 1982. (Lect. Notes Math., Vol. 997, pp. 90?112) Berlin, Heidelberg, New York: Springer 1983
[13] [Ca3] Catanese, F.: Moduli of algebraic surfaces, In: Theory of Moduli. Proceedings C.I.M.E. 1985. (Lect. Notes Math., Vol. 1337, pp. 1?83). Berlin, Heidelberg, New York: Springer 1988
[14] [C-C1] Catanese, F., Ciliberto, C.: Surfaces withp g=q=1. In: ?Problems on surfaces and their classification?, Proc. Cortona 1988. Symp. Math.32, INDAM, Academic Press (to appear)
[15] [C-C2] Catanese, F., Ciliberto, C.: Symmetric products of elliptic curves and surfaces withp g=q=1. In: Proceedings of the Conf. ?Projective Varieties?, Trieste 1989. (Lect. Notes Math.) Berlin, Heidelberg, New York: Springer (to appear) · Zbl 0791.14015
[16] [D-F] De Franchis, M.: Sulle superficie algebriche le quali contengono un fascio irrazionale di curve. Rend. Circ. Mat. Palermo20, 49?54 (1905) · JFM 36.0696.01 · doi:10.1007/BF03014027
[17] [Des] Deschamps, M.: Reduction semi-stable. In: Seminaire sur les pinceaux de courbes de genre au moins deux. Asterisque86, 1?34 (1981) · Zbl 0505.14008
[18] [Do] Donaldson, S.: La topologie différentièlle des surfaces complexes. C.R. Acad. Sci. Paris301, 317?320 (1985)
[19] [En] Enriques, F.: Le superficie algebriche. Bologna: Zanichelli 1949 · Zbl 0036.37102
[20] [F1] Flenner, H.: Über Deformationen Holomorpher Abbildungen. Osnabrücker Schriften zur Mathematik I-VII and 1?142 (1979)
[21] [Fos] Fossum, R.: Formes differentielles non fermees. In: Seminaire sur les pineaux de courbes de genre au moins deux. Asterisque86, 90?96 (1981)
[22] [Fu] Fujita, T.: On Kachler fibre spaces over curves. J. Math. Soc. Japan30, 779?794 (1978) · Zbl 0393.14006 · doi:10.2969/jmsj/03040779
[23] [Ha] Hartshorne, R.: Algebraic geometry. G.T.M.52. Berlin, Heidelberg, New York: Springer 1977 · Zbl 0367.14001
[24] [Ho1] Horikawa, E.: On deformation of holomorphic maps I. J. Math. Soc. Japan25, 372?396 (1973) · Zbl 0254.32022 · doi:10.2969/jmsj/02530372
[25] [Ho2] Horikawa, E.: On defermation of holomorphic maps II, J. Math. Soc. Japan26, 647?667 (1974) · Zbl 0286.32014 · doi:10.2969/jmsj/02640647
[26] [Ho3] Horikawa, E.: On deformation of holomorphic maps III. Math. Ann.222, 275?282 (1976) · Zbl 0334.32021 · doi:10.1007/BF01362584
[27] [G-L1] Green, M., Lazarsfeld, R.: Deformation theory, generic vanishing theorems and some conjectures of Enriques, Catanese and Beauville. Invent. Math.90, 389?407 (1987) · Zbl 0659.14007 · doi:10.1007/BF01388711
[28] [G-L2] Green, M., Lazarsfeld, R.: Higher obstructions to deforming cohomology groups. Talk at the Trieste Conference ?Projective varieties?, June 1989 and paper in preparation
[29] [Il1-2] Illusie, L.: Complexe contangent et deformations I, II. (Lect. Notes Math., Vol. 239) 1971, Vol. 283, 1972, Berlin, Heidelberg, New York: Springer · Zbl 0224.13014
[30] [Il3] Illusie, L.: Complexe de De Rham-Witt et Cohomologie Cristalline. Ann. E.N.S. (4)12, 501?661 (1979)
[31] [Kaw] Kawamata, Y.: Characterization of Abelian varieties. Comp. Math.43, 253?276 (1981) · Zbl 0471.14022
[32] [Ko] Kollar, J.: Higher direct images of dualizing sheaves. Ann. Math., II. Ser.123, 11?42 (1986) · Zbl 0598.14015 · doi:10.2307/1971351
[33] [La] Lang, W.: Quasi-elliptic surfaces in Charasteristic 3. Ann. E.N.S. (4)12, 473?500 (1979)
[34] [Me] Menegaux, R.: Un theoreme d’annulation en earacteristique positive. In: Seminaire sur les pinceaux de courbes de genre au moins deux. Asterisque86, 35?43 (1981)
[35] [Ny] Nygaard, N.: Closedness of regular 1-forms on algebraic surfaces. Ann. E.N.S. (4)12, 33?45 (1979)
[36] [Pal] Palamodov, V.P.: Deformations of complex spaces. Usp. Mat. Nauk.31.3, 129?194 (1976) · Zbl 0347.32009
[37] [Pet] Peters, C.A.M.: Some remarks about Reider’s article ?On the infinitesimal Torelli theorem for certain irregular surfaces of general type?. Math. Ann.281, 315?324 (1988) · Zbl 0625.14006 · doi:10.1007/BF01458436
[38] [Ran1] Ran, Z.: On subvarieties of Abelian varieties. Invent. Math.62, 459?479 (1981) · Zbl 0474.14016 · doi:10.1007/BF01394255
[39] [Ran2] Ran, Z.: Deformations of maps. In: Algebraic Curves and Projective Geometry. Proceedings Trento 1988. (Lect. Notes Math., Vol. 1389, pp. 246?253) Berlin, Heidelberg, New York: Springer 1989
[40] [Rei] Reider, I.: Bounds for the number of moduli for irregular varieties of general type. Manuscr. Math.60, 221?233 (1988) · Zbl 0659.14025 · doi:10.1007/BF01161932
[41] [Se] Severi, F.: Geometria dei sistemi algebrici sopra una superficie e sopra una varietá algebrica, Vol. II and III. Roma: Cremonese 1958 · Zbl 0209.52302
[42] [Sh] Shafarevich, I.P.: Algebraic surfaces. Moskva: Steklov Institute Publ. 1965
[43] [Siu] Siu, Y.T.: Strong rigidity for Kaehler manifolds and the construction of bounded holomorphic functions. In: Howe, R. (ed.) Discrete groups and Analysis. Birkhäuser 124?151 (1987) · Zbl 0647.53052
[44] [Sz] Szpiro, L.: Proprietes numeriques du faisceau dualisant relatif. In: Seminaire sur les pinceaux de courbes de genre au moins deux. Asterisque86, 44?78 (1981)
[45] [Ueno] Ueno, K.: Classification theory of algebraic varieties and compact complex spaces. (Lect. Notes Math., Vol. 439, Berlin, Heidelberg, New York: Springer 1975 · Zbl 0299.14007
[46] [Y] Yau, S.T.: On the Ricci-curvature of a complex Kaehler manifold and the complex Monge-Ampere equation. Commun. Pure Appl. Math.31, 339?411 (1978) · Zbl 0369.53059 · doi:10.1002/cpa.3160310304
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.