Schumacher, J. M. A pointwise criterion for controller robustness. (English) Zbl 0743.93080 Syst. Control Lett. 18, No. 1, 1-8 (1992). Summary: We present a pointwise criterion for controller robustness with respect to stability. The term ‘point’ here refers to complex frequency in the right half plane. The proposed test is based on the concept of the minimal angle between subspaces determined by the plant and the compensator. The test leads to separate balls of uncertainty at each frequency, and may therefore help to reduce conservativeness in the analysis of robustness. Cited in 1 ReviewCited in 14 Documents MSC: 93D09 Robust stability Keywords:perturbations; linear time-invariant systems; controller robustness × Cite Format Result Cite Review PDF Full Text: DOI References: [1] Achieser, N. I.; Glasmann, I. M., Theorie der Lineare Operatoren im Hilbert-Raum (1954), Akademic-Verlag: Akademic-Verlag Berlin · Zbl 0056.11101 [2] Afriat, S. N., Orthogonal and oblique projectors and the characteristics of pairs of vector spaces, (Proc. Cambridge Philos. Soc., 53 (1957)), 800-816 [3] Berkson, E., Some metrics on the subspaces of a Banach space, Pac. J. Math., 13, 7-22 (1963) · Zbl 0118.10402 [4] Björck, Å.; Golub, G. H., Numerical methods for computing angles between linear subspaces, Math. Comput., 27, 579-594 (1973) · Zbl 0282.65031 [5] Brockett, R. W.; Byrnes, C. I., Multivariable Nyquist criteria, root loci, and pole placement: a geometric viewpoint, IEEE Trans. Automat. Control, 26, 271-284 (1981) · Zbl 0462.93026 [6] Chatelin, F., Spectral Approximation of Linear Operators (1983), Academic Press: Academic Press London · Zbl 0517.65036 [7] Davis, C.; Kahan, W. M., The rotation of eigenvectors by a perturbation, III, SIAM J. Numer. Anal., 7, 1-46 (1970) · Zbl 0198.47201 [8] Dempster, A. P., Elements of Continuous Multivariate Analysis (1969), Addison-Wesley: Addison-Wesley Reading, MA · Zbl 0197.44904 [9] El-Sakkary, A. K., The gap metric: robustness of stabilization of feedback systems, IEEE Trans. Automat. Control, 30, 240-247 (1985) · Zbl 0561.93047 [10] El-Sakkary, A. K., Estimating robustness on the Riemann sphere, Internat. J. Control, 49, 561-567 (1989) · Zbl 0664.93022 [11] Flanders, D. A., Angles between flat subspaces of a real \(n- dimensional\) Euclidean space, (Friedrichs, K. O.; Neugebauer, O. E.; Stoker, J. J., Studies and Essays presented to R. Courant on his 60th birthday, January 8, 1948 (1948), Interscience: Interscience New York), 129-138 · Zbl 0033.20104 [12] Foias, C.; Georgiou, T. T.; Smith, M. C., Geometric techniques for robust stabilization of linear timevarying systems, (Proc. 29th Conf. Dec. Contr.. Proc. 29th Conf. Dec. Contr., Honolulu, Dec. 1990 (1990), IEEE Press: IEEE Press Piscataway, NJ), 2868-2873 [13] Georgiou, T. T., On the computation of the gap metric, Systems Control Lett., 11, 253-257 (1988) · Zbl 0669.93039 [14] Georgiou, T. T.; Smith, M. C., Optimal robustness in the gap metric, IEEE Trans. Automat. Control, 35, 673-686 (1990) · Zbl 0800.93289 [15] Glover, K.; McFarlane, D. C., Robust stabilization of normalized coprime factor plant descriptions with \(H∞\) bounded uncertainty, IEEE Trans. Autonomat. Control, 34, 821-830 (1989) · Zbl 0698.93063 [16] Gohberg, I. C.; Krein, M. G., Introduction to the Theory of Linear Nonselfadjoint Operators, (Transl. Math. Monogr., 18 (1969), Amer. Math. Soc: Amer. Math. Soc Providence, RI) · Zbl 0181.13504 [17] Gohberg, I. C.; Markus, A. S., Two theorems on the opening between subspaces of a Banach space, Uspekhi Mat. Nauk., 89, 135-140 (1959), (in Russian) · Zbl 0093.12003 [18] Golub, G. H.; Van Loan, C. F., Matrix Computations (1989), Johns Hopkins University Press: Johns Hopkins University Press Baltimore, MD · Zbl 0733.65016 [19] Hayman, W. K., Meromorphic Functions (1975), Oxford University Press: Oxford University Press Oxford · Zbl 0321.30030 [20] (Oeuvres, Tome III (1962), Gauthiers-Villars: Gauthiers-Villars Paris), 79-149, also [21] Kato, T., Perturbation Theory for Linear Operators (1966), Springer-Verlag: Springer-Verlag New York · Zbl 0148.12601 [22] Krasnosel’skii, M. A.; Vainikko, G. M.; Zabreiko, P. P.; Rutitskii, Ya. B.; Stetsenko, V. Ya., Approximate Solution of Operator Equations (1972), Wolters-Noordhoff: Wolters-Noordhoff Groningen · Zbl 0231.41024 [23] Krein, M. G.; Krasnosel’skii, M. A., Fundamental theorems concerning the extension of Hermitian operators and some of their applications to the theory of orthogonal polynomials and the moment problem, Uspekhi Mat. Nauk., 2, 60-106 (1947), (in Russian) · Zbl 1460.47011 [24] Krein, M. G.; Krasnosel’skii, M. A.; Mil’man, D. P., On the defect numbers of linear operators in a Banach space and on some geometric questions, Akad. Nauk Ukrain RSR. Zbirnik Prac’ Inst. Mat., 11, 97-112 (1948), (in Ukrainian) [25] Kuijper, M.; Schumacher, J. M., Realization of autoregressive equations in pencil and descriptor form, Siam J. Control Optim., 28, 1162-1189 (1990) · Zbl 0721.93016 [26] Ljance, V.È., Some properties of idempotent operators, Teor. i. Prikl. Mat. L’vov, 1, 16-22 (1959), (in Russian) [27] Martin, C.; Hermann, R., Applications of algebraic geometry to systems theory: The McMillan degree and Kronecker indices of transfer functions as topological and holomorphic system invariants, SIAM J. Control. Optim., 16, 743-755 (1978) · Zbl 0401.93020 [28] Massera, J. L.; Schäffer, J. J., Linear differential equations and functional analysis, Ann. of Math., 67, 517-573 (1958) · Zbl 0178.17701 [29] McFarlane, D. C.; Glover, K., Robust Controller Design Using Normalized Coprime Factor Plant Descriptions, (Lect. Notes Contr. Inform. Sci. No. 138 (1990), Springer-Verlag: Springer-Verlag New York) · Zbl 0688.93044 [30] Ober, R. J.; Sefton, J. A., Stability of control systems and graphs of linear systems, Systems Control Lett., 4, 265-280 (1991) · Zbl 0747.93062 [31] Partington, J. R., Approximation of unstable infinite-dimensional systems using coprime factors, Systems Control Lett., 16, 89-96 (1991) · Zbl 0732.93015 [32] Qui, L.; Davison, E. J., The pointwise gap metric of transfer matrices, (IEEE Trans. Automat. Control. (1991), University of Toronto), To appear in [33] Schumacher, J. M., Transformations of linear systems under external equivalence, Linear Algebra Appl., 102, 1-34 (1988) · Zbl 0668.93019 [34] Seidel, J., Angles and distances in \(n- dimensional\) Euclidean and noneuclidean geometry, (Proc. Kon. Ned. Akad. Wet. Ser. A, 58 (1955)), 535-541 · Zbl 0067.38304 [35] Sz.-Nagy, B., Perturbations des transformations autoadjointes dans l’espace de Hilbert, Comm. Math. Helv., 19, 347-366 (1947) · Zbl 0035.20001 [36] Vidyasagar, M., The graph metric for unstable plants and robustness estimates for feedback stability, IEEE Trans. Automat. Control., 29, 403-418 (1984) · Zbl 0536.93042 [37] Willems, J. C., Paradigms and puzzles in the theory of dynamical systems, IEEE Trans. Automat. Control, 36, 259-294 (1991) · Zbl 0737.93004 [38] Zames, G.; El-Sakkary, A. K., Unstable systems and feedback: The gap metric, (Proc. Allerton Conf. (1980)), 380-385 [39] Zhu, S. Q., Graph topology and topology for unstable systems, IEEE Trans. Automat. Control, 34, 848-855 (1989) · Zbl 0697.93030 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.