×

The deal.II library, Version 9.3. (English) Zbl 1478.65004

Summary: This paper provides an overview of the new features of the finite element library deal.II, version 9.3. Downloads are available at https://www.dealii.org/ and https://github.com/dealii/dealii.

MSC:

65-04 Software, source code, etc. for problems pertaining to numerical analysis
65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
65Y05 Parallel numerical computation
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] P. R. Amestoy, I. S. Duff, J. Koster, and J.-Y. L’Excellent, A fully asynchronous multifrontal solver using distributed dynamic scheduling, SIAM J. Matrix Analysis Appl. 23 (2001), No. 1, 15-41. · Zbl 0992.65018
[2] P. R. Amestoy, A. Guermouche, J.-Y. L’Excellent, and S. Pralet, Hybrid scheduling for the parallel solution of linear systems, Parallel Computing32 (2006), No. 2, 136-156.
[3] P. R. Amestoy, I. S. Duff, and J.-Y. L’Excellent, Multifrontal parallel distributed symmetric and unsymmetric solvers, Comput. Methods Appl. Mech. Engrg. 184 (2000), 501-520. · Zbl 0956.65017
[4] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen, LAPACK Users’ Guide, 3rd ed, Society for Industrial and Applied Mathematics, Philadelphia, PA, 1999. · Zbl 0934.65030
[5] D. Arndt, W. Bangerth, B. Blais, T. C. Clevenger, M. Fehling, A. V. Grayver, T. Heister, L. Heltai, M. Kronbichler, M. Maier, P. Munch, J.-P. Pelteret, R. Rastak, I. Thomas, B. Turcksin, Z. Wang, and D. Wells, The deal.II library, Version 9.2, J. Numer. Math. 28 (2020), No. 3, 131-146. · Zbl 1452.65222
[6] D. Arndt, W. Bangerth, T. C. Clevenger, D. Davydov, M. Fehling, D. Garcia-Sanchez, G. Harper, T. Heister, L. Heltai, M. Kronbichler, R. M. Kynch, M. Maier, J.-P. Pelteret, B. Turcksin, and D. Wells, The deal.II library, Version 9.1, J. Numer. Math. 27 (2019), No. 4, 203-213. · Zbl 1435.65010
[7] D. Arndt, W. Bangerth, D. Davydov, T. Heister, L. Heltai, M. Kronbichler, M. Maier, J.-P. Pelteret, B. Turcksin, and D. Wells, The deal.II finite element library: Design, features, and insights, Comput. & Math. Appl. 81 (2021), 407-422. · Zbl 07288721
[8] S. Balay, S. Abhyankar, M. F. Adams, J. Brown, P. Brune, K. Buschelman, L. Dalcin, V. Eijkhout, W. D. Gropp, D. Karpeyev, D. Kaushik, M. G. Knepley, D. May, L. Curfman McInnes, R. Mills, T. Munson, K. Rupp, P. Sanan B. F. Smith, S. Zampini, H. Zhang, and H. Zhang, PETSc Users Manual, Argonne National Laboratory, Report No. ANL-95/11 - Revision 3.15, 2021.
[9] S. Balay, S. Abhyankar, M. F. Adams, J. Brown, P. Brune, K. Buschelman, L. Dalcin, V. Eijkhout, W. D. Gropp, D. Karpeyev, D. Kaushik, M. G. Knepley, D. May, L. C. McInnes, R. Mills, T. Munson, K. Rupp, P. Sanan B. F. Smith, S. Zampini, H. Zhang, and H. Zhang, PETSc Web page, 2021, https://www.mcs.anl.gov/petsc.
[10] W. Bangerth, C. Burstedde, T. Heister, and M. Kronbichler, Algorithms and data structures for massively parallel generic adaptive finite element codes, ACM Trans. Math. Software38 (2011), No. 2, 14/1-14/28. · Zbl 1365.65247
[11] W. Bangerth, R. Hartmann, and G. Kanschat, deal.II - a general purpose object oriented finite element library, ACM Trans. Math. Software33 (2007), No. 4, 24/1-24/27. · Zbl 1365.65248
[12] W. Bangerth and O. Kayser-Herold, Data structures and requirements for hp finite element software, ACM Trans. Math. Software36 (2009), No. 1, 4/1-4/31. · Zbl 1364.65237
[13] R. A. Bartlett, D. M. Gay, and E. T. Phipps, Automatic Differentiation of C++ Codes for Large-Scale Scientific Computing, International Conference on Computational Science - ICCS 2006 (Eds. V. N. Alexandrov, G. D. van Albada, P. M. A. Sloot, and J. Dongarra), Springer, Berlin-Heidelberg, 2006, pp. 525-532.
[14] R. Becker and M. Braack, Multigrid techniques for finite elements on locally refined meshes, Numer. Linear Alg. Appl. 7 (2000), No. 6, 363-379. · Zbl 1051.65117
[15] L. S. Blackford, J. Choi, A. Cleary, E. D’Azevedo, J. Demmel, I. Dhillon, J. Dongarra, S. Hammarling, G. Henry, A. Petitet, K. Stanley, D. Walker, and R. C. Whaley, ScaLAPACK Users’ Guide, Society for Industrial and Applied Mathematics, Philadelphia, PA, 1997. · Zbl 0886.65022
[16] H.-J. Bungartz, F. Lindner, B. Gatzhammer, M. Mehl, K. Scheufele, A. Shukaev, and B. Uekermann, preCICE - a fully parallel library for multi-physics surface coupling, Computers & Fluids141 (2016), 250-258. · Zbl 1390.76004
[17] C. Burstedde, L. C. Wilcox, and O. Ghattas, p4est: Scalable algorithms for parallel adaptive mesh refinement on forests of octrees, SIAM J. Sci. Comput. 33 (2011), No. 3, 1103-1133. · Zbl 1230.65106
[18] T. C. Clevenger, T. Heister, G. Kanschat, and M. Kronbichler, A flexible, parallel, adaptive geometric multigrid method for FEM, ACM Trans. Math. Software47 (2021), No. 1, 7/1-7/27.
[19] cuSOLVER Library, https://docs.nvidia.com/cuda/cusolver/index.html.
[20] cuSPARSE Library, https://docs.nvidia.com/cuda/cusparse/index.html.
[21] T. A. Davis, Algorithm 832: UMFPACK v4.3 - an unsymmetric-pattern multifrontal method, ACM Trans. Math. Software30 (2004), 196-199. · Zbl 1072.65037
[22] D. Davydov, T. Gerasimov, J.-P. Pelteret, and P. Steinmann, Convergence study of the h-adaptive PUM and the hp-adaptive FEM applied to eigenvalue problems in quantum mechanics, Adv. Modeling Simul. Engrg. Sci. 4 (2017), No. 1, 7.
[23] A. DeSimone, L. Heltai, and C. Manigrasso, Tools for the solution of PDEs defined on curved manifolds with deal.II, SISSA, Report No. 42/2009/M, 2009.
[24] N. Fehn, P. Munch, W. A. Wall, and M. Kronbichler, Hybrid multigrid methods for high-order discontinuous Galerkin discretizations, J. Comput. Phys. 415 (2020), 109538. · Zbl 1440.65135
[25] M. Galassi, J. Davies, J. Theiler, B. Gough, G. Jungman, P. Alken, M. Booth, F. Rossi, and R. Ulerich, GNU Scientific Library Reference Manual (Edition 2.3), 2016.
[26] R. Gassmöller, H. Lokavarapu, E. Heien, E. G. Puckett, and W. Bangerth, Flexible and scalable particle-in-cell methods with adaptive mesh refinement for geodynamic computations, Geochemistry, Geophysics, Geosystems19 (2018), No. 9, 3596-3604.
[27] C. Geuzaine and J.-F. Remacle, Gmsh: A 3-D finite element mesh generator with built-in pre-and post-processing facilities, Int. J. Numer. Methods Engrg. 79 (2009), No. 11, 1309-1331. · Zbl 1176.74181
[28] Ginkgo: High-Performance Linear Algebra Library for Manycore Systems, https://github.com/ginkgo-project/ginkgo.
[29] N. Giuliani, A. Mola, and L. Heltai, \( \pi \)-BEM: A flexible parallel implementation for adaptive, geometry aware, and high order boundary element methods, Adv. Engrg. Software121 (2018), 39-58.
[30] S. Golshan, P. Munch, R. Gassmöller, M. Kronbichler, and B. Blais, Lethe-DEM: An open-source parallel discrete element solver with load balancing, Preprint arXiv:2106.09576, 2021.
[31] A. Griewank, D. Juedes, and J. Utke, Algorithm 755: ADOL-C: a package for the automatic differentiation of algorithms written in C/C++, ACM Trans. Math. Software22 (1996), No. 2, 131-167. · Zbl 0884.65015
[32] L. Heltai, W. Bangerth, M. Kronbichler, and A. Mola, Propagating geometry information to finite element computations, ACM Trans. Math. Software, 47 (2021), No. 4, 32:1-32:30.
[33] L. Heltai and A. Mola, Towards the Integration of CAD and FEM using open source libraries: A collection of deal.II manifold wrappers for the OpenCASCADE library, SISSA, Report, 2015.
[34] V. Hernandez, J. E. Roman, and V. Vidal, SLEPc: a scalable and flexible toolkit for the solution of eigenvalue problems, ACM Trans. Math. Software31 (2005), No. 3, 351-362. · Zbl 1136.65315
[35] M. A. Heroux, R. A. Bartlett, V. E. Howle, R. J. Hoekstra, J. J. Hu, T. G. Kolda, R. B. Lehoucq, K. R. Long, R. P. Pawlowski, E. T. Phipps, A. G. Salinger, H. K. Thornquist, R. S. Tuminaro, J. M. Willenbring, A. Williams, and K. S. Stanley, An overview of the Trilinos project, ACM Trans. Math. Software31 (2005), 397-423. · Zbl 1136.65354
[36] M. A. Heroux et al., Trilinos Web page, 2021, https://trilinos.org.
[37] A. C. Hindmarsh, P. N. Brown, K. E. Grant, S. L. Lee, R. Serban, D. E. Shumaker, and C. S. Woodward, SUNDIALS: suite of nonlinear and differential/algebraic equation solvers, ACM Trans. Math. Software31 (2005), No. 3, 363-396. · Zbl 1136.65329
[38] International Standards Organization
[39] B. Janssen and G. Kanschat, Adaptive multilevel methods with local smoothing for H^1- and H^curl-conforming high order finite element methods, SIAM J. Sci. Comput. 33 (2011), No. 4, 2095-2114. · Zbl 1230.65133
[40] G. Kanschat, Multi-level methods for discontinuous Galerkin FEM on locally refined meshes, Comput. & Struct. 82 (2004), No. 28, 2437-2445.
[41] G. Karypis and V. Kumar, A fast and high quality multilevel scheme for partitioning irregular graphs, SIAM J. Sci. Comput. 20 (1998), No. 1, 359-392. · Zbl 0915.68129
[42] M. Kronbichler and K. Kormann, A generic interface for parallel cell-based finite element operator application, Comput. Fluids63 (2012), 135-147. · Zbl 1365.76121
[43] M. Kronbichler and K. Kormann, Fast matrix-free evaluation of discontinuous Galerkin finite element operators, ACM Trans. Math. Software45 (2019), No. 3, 29:1-29:40. · Zbl 07193378
[44] D. Lebrun-Grandié, A. Prokopenko, B. Turcksin, and S. R. Slattery, ArborX: a performance portable geometric search library, ACM Trans. Math. Software47 (2021), No. 1, 2/1-2/15.
[45] R. B. Lehoucq, D. C. Sorensen, and C. Yang, ARPACK Users’ Guide: Solution of Large-Scale Eigenvalue Problems with Implicitly Restarted Arnoldi Methods, SIAM, Philadelphia, 1998. · Zbl 0901.65021
[46] F. Lindner, A. Totounferoush, M. Mehl, B. Uekermann, N. E. Pour, V. Krupp, S. Roller, T. Reimann, D. C. Sternel, R. Egawa, et al., ExaFSA: parallel fluid-structure-acoustic simulation, Software for Exascale Computing-SPPEXA 2016-2019, 136 (2020), 271.
[47] List of Changes for 9.3, https://www.dealii.org/developer/doxygen/deal.II/changes_between_9_2_0_and_9_3_0.html.
[48] A. Logg, Efficient representation of computational meshes, Int. J. Comp. Sci. Engrg. 4 (2009), No. 4, 283-295.
[49] M. Maier, M. Bardelloni, and L. Heltai, LinearOperator – a generic, high-level expression syntax for linear algebra, Comput. Math. Appl. 72 (2016), No. 1, 1-24. · Zbl 1443.65003
[50] M. Maier, M. Bardelloni, and L. Heltai, LinearOperator Benchmarks, Version 1.0.0, March 2016, Zenodo. doi:10.5281/zenodo.47202.
[51] MUMPS: a MUltifrontal Massively Parallel sparse direct Solver, http://graal.ens-lyon.fr/MUMPS/.
[52] P. Munch, K. Kormann, and M. Kronbichler, hyper.deal: An efficient, matrix-free finite-element library for high-dimensional partial differential equations, ACM Trans. Math. Software, 47 (2021), No. 4, 33:1-33:34.
[53] muparser: Fast Math Parser Library, http://muparser.beltoforion.de/.
[54] OpenCASCADE: Open CASCADE Technology, 3D Modeling & Numerical Simulation, http://www.opencascade.org/.
[55] J. Reinders, Intel Threading Building Blocks, O’Reilly, 2007.
[56] D. Ridzal and D. P. Kouri, Rapid Optimization Library., Sandia National Laboratories (SNL-NM), Albuquerque, NM, Report, 2014.
[57] A. Sartori, N. Giuliani, M. Bardelloni, and L. Heltai, deal2lkit: A toolkit library for high performance programming in deal.II, SoftwareX7 (2018), 318-327.
[58] N. Schlömer, quadpy: Your one-stop shop for numerical integration in python, 2021, https://github.com/nschloe/quadpy/.
[59] T. Schulze, A. Gessler, K. Kulling, D. Nadlinger, J. Klein, M. Sibly, and M. Gubisch, Open asset import library (assimp), 2012, https://github.com/assimp/assimp.
[60] H. Sundar, G. Biros, C. Burstedde, J. Rudi, O. Ghattas, and G. Stadler, Parallel geometric-algebraic multigrid on unstructured forests of octrees, In: SC’12: Proc. of the Int. Conf. on High Performance Computing, Networking, Storage and Analysis, IEEE, 2012, pp. 1-11.
[61] SymEngine: Fast Symbolic Manipulation Library, Written in C++, https://symengine.org/.
[62] The HDF Group, Hierarchical Data Format, Version 5, 1997-2018, http://www.hdfgroup.org/HDF5/.
[63] B. Turcksin, M. Kronbichler, and W. Bangerth, WorkStream – a design pattern for multicore-enabled finite element computations, ACM Trans. Math. Software43 (2016), No. 1, 2/1-2/29. · Zbl 1396.65145
[64] A. Walther and A. Griewank, Getting started with ADOL-C, In: Combinatorial Scientific Computing, (Eds. U. Naumann and O. Schenk), Chapman-Hall CRC Comput. Sci., 2012, pp. 181-202.
[65] F. D. Witherden and P. E. Vincent, On the identification of symmetric quadrature rules for finite element methods, Computers & Math. Appl. 69 (2015), No. 10, 1232-1241. · Zbl 1443.65378
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.