A subgradient algorithm for data-rate optimization in the remote state estimation problem. (English) Zbl 1478.93074


93B07 Observability
93B53 Observers
93C15 Control/observation systems governed by ordinary differential equations
93B70 Networked control


Full Text: DOI arXiv


[1] E. Aylward, P. Parrillo, and J.-J. Slotine, Stability and robustness analysis of nonlinear systems via contraction metrics and SOS programming, Automatica, 44 (2008), pp. 2163-2170. · Zbl 1283.93217
[2] R. Bhatia, Positive Definite Matrices, Princeton Ser. Appl. Math. 24, Princeton University Press, Princeton, NJ, 2009. · Zbl 1133.15017
[3] J. Bochi, Ergodic optimization of Birkhoff averages and Lyapunov exponents, in Proceedings of the International Congress of Mathematicians, 2018. · Zbl 1448.37059
[4] J. Bochi and A. Navas, A geometric path from zero Lyapunov exponents to rotation cocycles, Ergodic Theory Dynam. Systems, 35 (2015), pp. 374-402. · Zbl 1408.37009
[5] V. A. Boichenko, G. A. Leonov, and V. Reitmann, Dimension Theory for Ordinary Differential Equations, Teubner-Verlag, Leipzig, 2005. · Zbl 1094.34002
[6] M. R. Bridson and A. Haeflinger, Metric Spaces of Non-Positive Curvature, Grundlehren Math. Wiss. 319, Springer, New York, 2013.
[7] Qi. Chen, E. Ott, and L. P. Hurd, Calculating topological entropies of chaotic dynamical systems, Phys. Lett. A, 156 (1991), pp. 48-52.
[8] G. d’Alessandro, P. Grassberger, S. Isola, and A. Politi, On the topology of the Hénon map, J. Phys. A, 23 (1990), pp. 5285-5294. · Zbl 0716.58010
[9] M. Dellnitz and O. Junge, Set oriented numerical methods for dynamical systems, in Handbook of Dynamical Systems, Vol. 2, North-Holland, Amsterdam, 2002, pp. 221-264. · Zbl 1036.37030
[10] M. P. do Carmo, Riemannian Geometry, Birkhäuser, Basel, 1992.
[11] C. R. Doering and A. McMillan, Optimal Time Averages in Non-Autonomous Nonlinear Dynamical Systems, preprint, arXiv:2008.07856, 2020.
[12] O. P. Ferreira and P. R. Oliveira, Subgradient algorithm on Riemannian manifolds. J. Optim. Theory Appl., 97 (1998), pp. 93-104. · Zbl 0907.90244
[13] O. P. Ferreira, M. S. Louzeiro, and L. F. Prudente, Iteration-complexity of the subgradient method on Riemannian manifolds with lower bounded curvature, Optimization, 68 (2019), pp. 713-729. · Zbl 1421.90114
[14] F. Forni and R. Sepulchre, A differential Lyapunov framework for contraction analysis, IEEE Trans. Automat. Control, 59 (2014), pp. 614-628. · Zbl 1360.93597
[15] G. Froyland, O. Junge, and G. Ochs, Rigorous computation of topological entropy with respect to a finite partition, Phys. D, 154 (2001), pp. 68-84. · Zbl 1028.37012
[16] S. Gallot, D. Hulin, and J. Lafontaine, Riemannian Geometry, Vol. 2, Springer, New York, 1990. · Zbl 0716.53001
[17] P. Giesl, Converse theorems on contraction metrics for an equilibrium, J. Math. Anal. Appl., 424 (2015), pp. 1380-1403. · Zbl 1331.34120
[18] P. Giesl, Converse theorem on a global contraction metric for a periodic orbit, Discrete Contin. Dyn. Syst., 39 (2019), pp. 5339-5363. · Zbl 1462.34069
[19] S. Hafstein and C. Kawan, Numerical approximation of the data-rate limit for state estimation under communication constraints, J. Math. Anal. Appl., 473 (2019), pp. 1280-1304. · Zbl 1415.93017
[20] W. Hahn, Stability of Motion, Springer, New York, 1967.
[21] M. Hénon, A two-dimensional mapping with a strange attractor, in The Theory of Chaotic Attractors, Springer, New York, 1976, pp. 94-102. · Zbl 0576.58018
[22] C. Kawan, On the relation between topological entropy and restoration entropy, Entropy, 21 (2019), 7.
[23] C. Kawan, A. S. Matveev, and A. Y. Pogromsky, Remote state estimation problem: Towards the data-rate limit along the avenue of the second Lyapunov method, Automatica, 125 (2021), 109467. · Zbl 1461.93204
[24] C. Kawan and S. Yüksel, On optimal coding of non-linear dynamical systems, IEEE Trans. Inform. Theory, 64 (2018), pp. 6816-6829. · Zbl 1401.94097
[25] C. Kawan, S. Hafstein, and P. Giesl, ResEntSG: Restoration entropy estimation for dynamical systems via Riemannian metric optimization, SoftwareX, 15 (2021), 100743.
[26] C. Kawan and S. Yüksel, Metric and topological entropy bounds for optimal coding of stochastic dynamical systems, IEEE Trans. Automat. Control, 65 (2019), pp. 2466-2479. · Zbl 07256362
[27] C. Lemaréchal, J.-J. Strodiot, and A. Bihain, On a bundle algorithm for nonsmooth optimization, Nonlinear Program., 4 (1981), pp. 245-282. · Zbl 0533.49023
[28] G. A. Leonov, I. Burkin, and A. Shepelyavyi, Frequency Methods in Oscillation Theory, Ser. Math. Appl. 357, Kluwer, Dordrecht, 1996.
[29] A. S. Lewis, The mathematics of eigenvalue optimization, Math. Program., 97 (2003), pp. 155-176. · Zbl 1035.90085
[30] A. S. Lewis and H. S. Sendov, Nonsmooth analysis of singular values. Part I: Theory, Set-Valued Anal., 13 (2005), pp. 213-241. · Zbl 1129.49025
[31] D. Liberzon and S. Mitra, Entropy and minimal bit rates for state estimation and model detection, IEEE Trans. Automat. Control, 63 (2017), pp. 3330-3344. · Zbl 1423.93055
[32] W. Lohmiller, and J.-J. Slotine, On contraction analysis for non-linear systems, Automatica, 34 (1998), pp. 683-696. · Zbl 0934.93034
[33] A. S. Matveev and A. Y. Pogromsky, Observation of nonlinear systems via finite capacity channels: Constructive data rate limits, Automatica, 70 (2016), pp. 217-229. · Zbl 1339.93030
[34] A. S. Matveev and A. Y. Pogromsky, Observation of nonlinear systems via finite capacity channels, part II: Restoration entropy and its estimates, Automatica, 103 (2019), pp. 189-199. · Zbl 1415.93064
[35] A. S. Matveev and A. V. Savkin, Estimation and Control over Communication Networks, Springer, New York, 2009. · Zbl 1165.93003
[36] A. S. Matveev, A. V. Proskurnikov, A. Y. Pogromsky, and E. Fridman, Comprehending complexity: Data-rate constraints in large-scale networks, IEEE Trans. Automat. Control, 64 (2019), pp. 4252-4259. · Zbl 1482.93354
[37] M. Misiurewicz, On non-continuity of topological entropy, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys., 19 (1971), pp. 319-320. · Zbl 0208.52101
[38] I. Morris, Mather sets for sequences of matrices and applications to the study of joint spectral radii, Proc. Lond. Math. Soc., 107 (2013), pp. 121-150. · Zbl 1277.15009
[39] A. Y. Pogromsky and A. S. Matveev, Estimation of topological entropy via the direct Lyapunov method, Nonlinearity, 24 (2011), pp. 1937-1959. · Zbl 1219.37012
[40] A. Y. Pogromsky and H. Nijmeijer, On estimates of the Hausdorff dimension of invariant compact sets, Nonlinearity, 13 (2000), pp. 927-945. · Zbl 0988.37028
[41] A. V. Savkin, Analysis and synthesis of networked control systems: Topological entropy, observability, robustness and optimal control, Automatica, 42 (2006), pp. 51-62. · Zbl 1121.93321
[42] Ch. Skokos, The Lyapunov characteristic exponents and their computation, in Dynamics of Small Solar System Bodies and Exoplanets, Springer, New York, 2010, pp. 63-135.
[43] S. Tatikonda and S. Mitter, Control under communication constraints, IEEE Trans. Automat. Control, 49 (2004), pp. 1056-1068. · Zbl 1365.93271
[44] S. Tatikonda and S. Mitter, Control over noisy channels, IEEE Trans. Automat. Control, 49 (2004), pp. 1196-1201. · Zbl 1365.94341
[45] I. Tobasco, D. Goluskin, and C. R. Doering, Optimal bounds and extremal trajectories for time averages in nonlinear dynamical systems, Phys. Lett. A, 382 (2008), pp. 382-386. · Zbl 1383.37001
[46] C. Udriste, Convex Functions and Optimization Methods on Riemannian Manifolds, Math. Appl. 297, Springer, New York, 2013. · Zbl 0932.53003
[47] Q. Voortman, A. Y. Pogromsky, A. S. Matveev, and H. Nijmeijer, Data-rate constrained observers of nonlinear systems, Entropy, 21 (2019), 282.
[48] Q. Voortman, A. Y. Pogromsky, A. S. Matveev, and H. Nijmeijer, Consensus of nonlinear systems with data-rate constraints, in Proceedings of the 21st IFAC World Congress, 2020.
[49] W. S. Wong and R. W. Brockett, Systems with finite communication bandwidth constraints. I. State estimation problems, IEEE Trans. Automat. Control, 42 (1997), pp. 1294-1299. · Zbl 0952.93125
[50] S. Yüksel and T. Başar, Stochastic Networked Control Systems: Stabilization and Optimization Under Information Constraints, Springer, New York, 2013. · Zbl 1280.93003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.