Honey badger algorithm: new metaheuristic algorithm for solving optimization problems. (English) Zbl 07431717

Summary: Recently, the numerical optimization field has attracted the research community to propose and develop various metaheuristic optimization algorithms. This paper presents a new metaheuristic optimization algorithm called Honey Badger Algorithm (HBA). The proposed algorithm is inspired from the intelligent foraging behavior of honey badger, to mathematically develop an efficient search strategy for solving optimization problems. The dynamic search behavior of honey badger with digging and honey finding approaches are formulated into exploration and exploitation phases in HBA. Moreover, with controlled randomization techniques, HBA maintains ample population diversity even towards the end of the search process. To assess the efficiency of HBA, 24 standard benchmark functions, CEC’17 test-suite, and four engineering design problems are solved. The solutions obtained using the HBA have been compared with ten well-known metaheuristic algorithms including Simulated annealing (SA), Particle Swarm Optimization (PSO), Covariance Matrix Adaptation Evolution Strategy (CMA-ES), Success-History based Adaptive Differential Evolution variants with linear population size reduction (L-SHADE), Moth-flame Optimization (MFO), Elephant Herding Optimization (EHO), Whale Optimization Algorithm (WOA), Grasshopper Optimization Algorithm (GOA), Thermal Exchange Optimization (TEO) and Harris Hawks optimization (HHO). The experimental results, along with statistical analysis, reveal the effectiveness of HBA for solving optimization problems with complex search-space, as well as, its superiority in terms of convergence speed and exploration-exploitation balance, as compared to other methods used in this study. The source code of HBA is currently available for public at https://www.mathworks.com/matlabcentral/fileexchange/98204-honey-badger-algorithm.


90-XX Operations research, mathematical programming
65-XX Numerical analysis
Full Text: DOI


[1] Ahmed, M. M.; Houssein, E. H.; Hassanien, A. E.; Taha, A.; Hassanien, E., Maximizing lifetime of large-scale wireless sensor networks using multi-objective whale optimization algorithm, Telecommun. Syst., 72, 243-259 (2019)
[2] Akopyan, A. V., Geometry of the cardioid, Amer. Math. Monthly, 122, 2, 144-150 (2015) · Zbl 1331.51019
[3] Begg, C.; Begg, K.; Du Toit, J.; Mills, M., Scent-marking behaviour of the honey badger, mellivora capensis (mustelidae), in the southern kalahari, Anim. Behav., 66, 5, 917-929 (2003)
[4] Begg, C.; Begg, K.; Du Toit, J.; Mills, M., Life-history variables of an atypical mustelid, the honey badger mellivora capensis, J. Zool., 265, 1, 17-22 (2005)
[5] Bonabeau, E.; Marco, D.d. R.D. F.; Dorigo, M.; Théraulaz, G.; Theraulaz, G., Swarm Intelligence: from Natural to Artificial Systems, Vol. 1 (1999), Oxford University Press · Zbl 1003.68123
[6] BoussaïD, I.; Lepagnot, J.; Siarry, P., A survey on optimization metaheuristics, Inform. Sci., 237, 82-117 (2013) · Zbl 1321.90156
[7] Cheng, S.; Shi, Y.; Qin, Q.; Zhang, Q.; Bai, R., Population diversity maintenance in brain storm optimization algorithm, J. Artif. Intell. Soft Comput. Res., 4, 2, 83-97 (2014)
[8] Coello, C. A.C., Use of a self-adaptive penalty approach for engineering optimization problems, Comput. Ind., 41, 2, 113-127 (2000)
[9] Črepinšek, M.; Liu, S.-H.; Mernik, M., Exploration and exploitation in evolutionary algorithms: A survey, ACM Comput. Surv., 45, 3, 1-33 (2013) · Zbl 1293.68251
[10] Dhiman, G.; Kumar, V., Spotted hyena optimizer: A novel bio-inspired based metaheuristic technique for engineering applications, Adv. Eng. Softw., 114, 48-70 (2017)
[11] Gong Dunwei, J. S.; Ji, X., Evolutionary algorithms with preference polyhedron for interval multi-objective optimization problems, Inform. Sci., 233, 141-161 (2013) · Zbl 1284.90099
[12] Hansen, N.; Ostermeier, A., Completely derandomized self-adaptation in evolution strategies, Evol. Comput., 9, 2, 159-195 (2001)
[13] Hashim, F. A.; Houssein, E. H.; Hussain, K.; Mabrouk, M. S.; Al-Atabany, W., A modified henry gas solubility optimization for solving motif discovery problem, Neural Comput. Appl., 32, 10759-10771 (2019)
[14] Hashim, F. A.; Houssein, E. H.; Mabrouk, M. S.; Al-Atabany, W.; Mirjalili, S., Henry gas solubility optimization: A novel physics-based algorithm, Future Gener. Comput. Syst., 101, 646-667 (2019)
[15] Hashim, F. A.; Hussain, K.; Houssein, E. H.; Mabrouk, M. S.; Al-Atabany, W., Archimedes optimization algorithm: a new metaheuristic algorithm for solving optimization problems, Appl. Intell., 51, 1531-1551 (2020)
[16] Hashim, F.; Mabrouk, M. S.; Al-Atabany, W., Gwomf: Grey wolf optimization for motif finding, (2017 13th International Computer Engineering Conference (ICENCO) (2017), IEEE), 141-146
[17] Hassan, M. H.; Houssein, E. H.; Mahdy, M. A.; Kamel, S., An improved manta ray foraging optimizer for cost-effective emission dispatch problems, Eng. Appl. Artif. Intell., 100, Article 104155 pp. (2021)
[18] Hassanien, A. E.; Kilany, M.; Houssein, E. H.; AlQaheri, H., Intelligent human emotion recognition based on elephant herding optimization tuned support vector regression, Biomed. Signal Process. Control, 45, 182-191 (2018)
[19] Heidari, A.; Seyedali, M.; Hossam, F.; Ibrahim, A.; Majdi, M.; Huiling, C., Harris hawks optimization: Algorithm and applications, Future Gener. Comput. Syst., 97, 849-872 (2019)
[20] Heptner, V., Mammals of the Soviet Union: Vol. 2, Part 1b: Carnivora (Weasels, Additional Species) (2001), Smithsonian Institution Libraries & The National Science Foundation
[21] Holland, J. H., Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence (1975), MIT Press: MIT Press Cambridge, Mass, USA · Zbl 0317.68006
[22] Houssein, E. H.; Helmy, B. E.-d.; Oliva, D.; Elngar, A. A.; Shaban, H., A novel black widow optimization algorithm for multilevel thresholding image segmentation, Expert Syst. Appl., 167, Article 114159 pp. (2021)
[23] Houssein, E. H.; Helmy, B. E.-d.; Rezk, H.; Nassef, A. M., An enhanced archimedes optimization algorithm based on local escaping operator and orthogonal learning for PEM fuel cell parameter identification, Eng. Appl. Artif. Intell., 103, Article 104309 pp. (2021)
[24] Houssein, E. H.; Mahdy, M. A.; Blondin, M. J.; Shebl, D.; Mohamed, W. M., Hybrid slime mould algorithm with adaptive guided differential evolution algorithm for combinatorial and global optimization problems, Expert Syst. Appl., 174, Article 114689 pp. (2021)
[25] Houssein, E. H.; Mahdy, M. A.; Fathy, A.; Rezk, H., A modified marine predator algorithm based on opposition based learning for tracking the global MPP of shaded PV system, Expert Syst. Appl., 183, Article 115253 pp. (2021)
[26] Houssein, E. H.; Saad, M. R.; Hashim, F. A.; Shaban, H.; Hassaballah, M., Lévy Flight distribution: A new metaheuristic algorithm for solving engineering optimization problems, Eng. Appl. Artif. Intell., 94, Article 103731 pp. (2020)
[27] Hussain, K.; Neggaz, N.; Zhu, W.; Houssein, E. H., An efficient hybrid sine-cosine harris hawks optimization for low and high-dimensional feature selection, Expert Syst. Appl., 176, Article 114778 pp. (2021)
[28] Hussain, K.; Salleh, M. N.M.; Cheng, S.; Shi, Y., Metaheuristic research: a comprehensive survey, Artif. Intell. Rev., 52, 2191-2233 (2018)
[29] Hussain, K.; Salleh, M. N.M.; Cheng, S.; Shi, Y., On the exploration and exploitation in popular swarm-based metaheuristic algorithms, Neural Comput. Appl., 31, 7665-7683 (2018)
[30] Hussain, K.; Salleh, M. N.M.; Cheng, S.; Shi, Y.; Naseem, R., Artificial bee colony algorithm: A component-wise analysis using diversity measurement, J. King Saud Univ.-Comput. Inf. Sci., 32, 7, 794-808 (2018)
[31] James, C., Introduction to Stochastics Search and Optimization (2003), John Wiley and Sons: John Wiley and Sons Hoboken, NJ
[32] Jamil, M.; Yang, X.-S., A literature survey of benchmark functions for global optimization problems, J. Math. Model. Numer. Optim., 4, 2, 150-194 (2013) · Zbl 1280.65053
[33] Kannan, B.; Kramer, S. N., An augmented Lagrange multiplier based method for mixed integer discrete continuous optimization and its applications to mechanical design, J. Mech. Des., 116, 2, 405-411 (1994)
[34] Kanoosh, H. M.; Houssein, E. H.; Selim, M. M., Salp swarm algorithm for node localization in wireless sensor networks, J. Comput. Netw. Commun., 2019 (2019)
[35] Kapner, D.; Cook, T.; Adelberger, E.; Gundlach, J.; Heckel, B. R.; Hoyle, C.; Swanson, H., Tests of the gravitational inverse-square law below the dark-energy length scale, Phys. Rev. Lett., 98, 2, Article 021101 pp. (2007)
[36] Kaveh, A.; Dadras, A., A novel meta-heuristic optimization algorithm: thermal exchange optimization, Adv. Eng. Softw., 110, 69-84 (2017)
[37] Kaveh, A.; Dadras, A., A novel meta-heuristic optimization algorithm: thermal exchange optimization, Adv. Eng. Softw., 110, 69-84 (2017)
[38] Kazemzadeh-Parsi, M., A modified firefly algorithm for engineering design optimization problems, Iran. J. Sci. Technol. Trans. Mech. Eng., 38, M2, 403 (2014)
[39] . Keith, C. Begg, The Honey Badger, 0000. http://www.honeybadger.com/index.html.
[40] Kirkpatrick, S.; Gelatt, C. D.; Vecchi, M. P., Optimization by simulated annealing, Science, 220, 4598, 671-680 (1983) · Zbl 1225.90162
[41] Mezura-Montes, E.; Coello, C. A.C., Useful infeasible solutions in engineering optimization with evolutionary algorithms, (Mexican International Conference on Artificial Intelligence (2005), Springer), 652-662
[42] Mirjalili, S., Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm, Knowl.-Based Syst., 89, 228-249 (2015)
[43] Mirjalili, S.; Lewis, A., The whale optimization algorithm, Adv. Eng. Softw., 95, 51-67 (2016)
[44] Neggaz, N.; Houssein, E. H.; Hussain, K., An efficient henry gas solubility optimization for feature selection, Expert Syst. Appl., 152, Article 113364 pp. (2020)
[45] Parejo, J. A.; Ruiz-Cortés, A.; Lozano, S.; Fernandez, P., Metaheuristic optimization frameworks: a survey and benchmarking, Soft Comput., 16, 3, 527-561 (2012)
[46] Rechenberg, I., Evolutionsstrategien, 83-114 (1978), Springer Berlin Heidelberg
[47] Russell, E.; Kennedy, J., A new optimizer using particle swarm theory, (Proceedings of the Sixth International Symposium on Micro Machine and Human Science (1995), IEEE), 39-43
[48] Sadollah, A.; Bahreininejad, A.; Eskandar, H.; Hamdi, M., Mine blast algorithm: A new population based algorithm for solving constrained engineering optimization problems, Appl. Soft Comput., 13, 5, 2592-2612 (2013)
[49] Saremi, S.; Mirjalili, S.; Lewis, A., Grasshopper optimisation algorithm: theory and application, Adv. Eng. Softw., 105, 30-47 (2017)
[50] Tanabe, R.; Fukunaga, A. S., Improving the search performance of SHADE using linear population size reduction, (2014 IEEE Congress on Evolutionary Computation (CEC) (2014)), 1658-1665
[51] Wang, G.-G.; Deb, S.; Gao, X.-Z.; Coelho, L. D.S., A new metaheuristic optimisation algorithm motivated by elephant herding behaviour, Int. J. Bio-Inspired Comput., 8, 6, 394-409 (2016)
[52] Wolpert, D. H.; Macready, W. G., No free lunch theorems for optimization, IEEE Trans. Evol. Comput., 1, 1, 67-82 (1997)
[53] Wu, G.; Mallipeddi, R.; Suganthan, P., Problem Definitions and Evaluation Criteria for the CEC 2017 Competition on Constrained Real-Parameter OptimizationTechnical Report (2017), National University of Defense Technology, Changsha, Hunan, PR China and Kyungpook National University, Daegu, South Korea and Nanyang Technological University: National University of Defense Technology, Changsha, Hunan, PR China and Kyungpook National University, Daegu, South Korea and Nanyang Technological University Singapore, URL http://www.ntu.edu.sg/home/EPNSugan/index_files/CEC2017
[54] Yazdani, M.; Jolai, F., Lion optimization algorithm (LOA): a nature-inspired metaheuristic algorithm, J. Comput. Des. Eng., 3, 1, 24-36 (2016)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.