ERG-DE: an elites regeneration framework for differential evolution. (English) Zbl 1474.68473

Summary: Differential evolution (DE) is one of the most popular paradigms of evolutionary algorithms. Numerous variants of basic DE have been developed in the past two decades after it was first proposed. However, very few works focused on re-exploring the neighborhood area of the elite solutions, which is definitely a promising area according to the proximate optimality principle. Here, a simple yet efficient elites regeneration (ERG) framework was designed to fill this gap. The elite population in this framework is defined as a group of individuals with better fitness values and they are regenerated after the selection procedure in DE. Specifically, a new individual is produced from the search space around each elite individual (i.e. the parent individual) by sampling Gaussian or Cauchy probability models and replaces the parent if it has better fitness value. The implementation of this procedure only introduces two parameters that need to be tuned, i.e. the standard deviation for Gaussian distribution and the scale parameter for the Cauchy distribution. In the proposed framework, the elite individuals serve as the mean or location parameters of the probability models and the standard deviation and scale parameters are tuned by experiments as a small constant value. Thus, offspring individuals are generated in areas close to their corresponding elite parents. The framework allows thorough exploitation of search neighborhoods around elite individuals and ultimately helps the elite individuals escaping from local optima. Experiments results on CEC2014 benchmark revealed that ERG framework significantly increased the optimization capacity for four original DE algorithms, four classical DE variants, and two state-of-the-art DE variants. In addition, it also demonstrated competitive performance when compared with another DE framework.


68W50 Evolutionary algorithms, genetic algorithms (computational aspects)
90C26 Nonconvex programming, global optimization


ERG-DE; Tabu search
Full Text: DOI


[1] Al-Dabbagh, R. D.; Neri, F.; Idris, N.; Baba, M. S., Algorithmic design issues in adaptive differential evolution schemes: review and taxonomy, Swarm Evol. Comput., 43, 284-311 (2018)
[2] Cai, Y.; Wang, J., Differential evolution with neighborhood and direction information for numerical optimization, IEEE Trans. Cybern., 43, 6, 2202-2215 (2013)
[3] Cai, Y.; Wang, J.; Chen, Y.; Wang, T.; Tian, H.; Luo, W., Adaptive direction information in differential evolution for numerical optimization, Soft Comput., 20, 2, 465-494 (2016)
[4] Cai, Y.; Zhao, M.; Liao, J.; Wang, T.; Tian, H.; Chen, Y., Neighborhood guided differential evolution, Soft Comput., 21, 16, 1-44 (2016)
[5] Caraffini, F.; Neri, F., A study on rotation invariance in differential evolution, Swarm Evol. Comput., 50, Article 100436 pp. (2019)
[6] Das, S.; Mullick, S. S.; Suganthan, P. N., Recent advances in differential evolution-an updated survey, Swarm Evol. Comput., 27, 1-30 (2016)
[7] Das, S.; Suganthan, P. N., Differential evolution: a survey of the state-of-the-art, IEEE Trans. Evol. Comput., 15, 1, 4-31 (2011)
[8] L.B. Deng, S. Wang, L.Y. Qiao, B.Q. Zhang, DE-RCO: rotating crossover operator with multiangle searching strategy for adaptive differential evolution, IEEE Access PP (99) (2017) 1-1.
[9] Dong, W.; Chen, T.; Tino, P.; Yao, X., Scaling up estimation of distribution algorithms for continuous optimization, IEEE Trans. Evol. Comput., 17, 6, 797-822 (2013)
[10] Du, W.; Leung, S. Y.; Tang, Y.; Vasilakos, A. V., Differential evolution with event-triggered impulsive control, IEEE Trans. Cybern., 47, 1, 244-257 (2017)
[11] Epitropakis, M. G.; Tasoulis, D. K.; Pavlidis, N. G.; Plagianakos, V. P.; Vrahatis, M. N., Enhancing differential evolution utilizing proximity-based mutation operators, IEEE Trans. Evol. Comput., 15, 1, 99-119 (2011)
[12] Glover, F.; Laguna, M., Tabu Search Background (1997), Springer: Springer US · Zbl 0930.90083
[13] Guo, S. M.; Yang, C. C., Enhancing differential evolution utilizing eigenvector-based crossover operator, IEEE Trans. Evol. Comput., 19, 1, 31-49 (2015)
[14] Guo, S. M.; Yang, C. C.; Hsu, P. H.; Tsai, S. H., Improving differential evolution with a successful-parent-selecting framework, IEEE Trans. Evol. Comput., 19, 5, 717-730 (2015)
[15] Hauschild, M.; Pelikan, M., An introduction and survey of estimation of distribution algorithms, Swarm Evol. Comput., 1, 3, 111-128 (2011)
[16] Jena, C.; Basu, M.; Panigrahi, C. K., Differential evolution with Gaussian mutation for combined heat and power economic dispatch, Soft Comput., 20, 2, 681-688 (2016)
[17] Larraanaga, P.; Lozano, J. A., Estimation of Distribution Algorithms: A New Tool for Evolutionary Computation (2001), Kluwer Academic Publishers
[18] Lei, Y. X.; Gou, J.; Wang, C.; Cai, Y. Q.; Luo, W., Improved differential evolution with a modified orthogonal learning strategy, IEEE Access, 5, 99, 9699-9716 (2017)
[19] Li, Y.; Guo, H.; Liu, X.; Li, Y.; Pan, W.; Gong, B.; Pang, S., New mutation strategies of differential evolution based on clearing niche mechanism, Soft Comput., 21, 20, 5939-5974 (2017)
[20] Li, Y. L.; Zhan, Z. H.; Gong, Y. J.; Chen, W. N.; Zhang, J.; Li, Y., Differential evolution with an evolution path: a DEEP evolutionary algorithm, IEEE Trans. Cybern., 45, 9, 1798-1810 (2015)
[21] J.J. Liang, B.Y. Qu, P.N. Suganthan, Problem definitions and evaluation criteria for the CEC 2014 special session and competition on single objective real-parameter numerical optimization.
[22] Liang, X.; Chen, H.; Lozano, J. A., A Boltzmann-based estimation of distribution algorithm for a general resource scheduling model, IEEE Trans. Evol. Comput., 19, 6, 793-806 (2015)
[23] L. Lin, M. Zhu, Efficient tracking of moving target based on an improved fast differential evolution algorithm, IEEE Access PP (99) (2018) 1-1.
[24] N. Luo, F. Qian, Estimation of distribution algorithm sampling under gaussian and cauchy distribution in continuous domain, in: IEEE ICCA 2010, 2010, IEEE, pp. 1716-1720.
[25] U. Mlakar, I. Fister, J. Brest, B. Potočnik, Multi-objective differential evolution for feature selection in facial expression recognition systems, Expert Syst. Appl. 89.
[26] Neri, F.; Iacca, G.; Mininno, E., Disturbed exploitation compact differential evolution for limited memory optimization problems, Inf. Sci., 181, 12, 2469-2487 (2011)
[27] Sun, G.; Yang, B.; Yang, Z.; Xu, G., An adaptive differential evolution with combined strategy for global numerical optimization, Soft Comput., 24, 9, 6277-6296 (2020)
[28] Neri, F.; Tirronen, V., Recent advances in differential evolution: a survey and experimental analysis, Artif. Intell. Rev., 33, 1-2, 61-106 (2010)
[29] Poikolainen, I.; Neri, F.; Caraffini, F., Cluster-based population initialization for differential evolution frameworks, Inf. Sci., 297, 216-235 (2015)
[30] Qi, J.; Xu, B.; Xue, Y.; Wang, K.; Sun, Y., Knowledge based differential evolution for cloud computing service composition, J. Ambient Intell. Human. Comput., 1-10 (2017)
[31] Shao, Z.; Pi, D.; Shao, W., An extended continuous estimation of distribution algorithm for solving the permutation flow-shop scheduling problem, Eng. Optim., 49, 11, 1868-1889 (2017)
[32] Storn, R.; Price, K., Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces, J. Global Optim., 11, 4, 341-359 (1997) · Zbl 0888.90135
[33] Sun, J.; Zhang, Q.; Tsang, E. P., DE/EDA: a new evolutionary algorithm for global optimization, Inf. Sci., 169, 3-4, 249-262 (2005)
[34] Wang, J.; Liao, J.; Zhou, Y.; Cai, Y., Differential evolution enhanced with multiobjective sorting-based mutation operators, IEEE Trans. Cybern., 44, 12, 2792-2805 (2017)
[35] Wang, Y.; Liu, Z. Z.; Li, J.; Li, H. X.; Yen, G. G., Utilizing cumulative population distribution information in differential evolution, Appl. Soft Comput., 48, 329-346 (2016)
[36] Yang, M.; Li, C.; Cai, Z.; Guan, J., Differential evolution with auto-enhanced population diversity, IEEE Trans. Cybern., 45, 2, 302 (2015)
[37] Yang, Q.; Chen, W. N.; Li, Y.; Chen, C. L.; Xu, X. M.; Zhang, J., Multimodal estimation of distribution algorithms, IEEE Trans. Cybern., 47, 3, 636-650 (2017)
[38] Yang, Q.; Chen, W.-N.; Li, Y.; Chen, C. P.; Xu, X.-M.; Zhang, J., Multimodal estimation of distribution algorithms, IEEE Trans. Cybern., 47, 3, 636-650 (2016)
[39] S.X. Zhang, S.Y. Zheng, L.M. Zheng, An efficient multiple variants coordination framework for differential evolution, IEEE Trans. Cybern. PP (99) (2017) 1-14.
[40] Zhong, J. H.; Shen, M.; Zhang, J.; Chung, S. H.; Shi, Y. H.; Li, Y., A Differential evolution algorithm with dual populations for solving periodic railway timetable scheduling problem, IEEE Trans. Evol. Comput., 17, 4, 512-527 (2013)
[41] Zhou, A.; Sun, J.; Zhang, Q., An estimation of distribution algorithm with cheap and expensive local search methods, IEEE Trans. Evol. Comput., 19, 6, 807-822 (2015)
[42] Zhou, Y.; Wang, J.; Zhou, Y.; Qiu, Z.; Bi, Z.; Cai, Y., Differential evolution with guiding archive for global numerical optimization, Appl. Soft Comput., 43, C, 424-440 (2016)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.