×

A restaurant process with cocktail bar and relations to the three-parameter Mittag-Leffler distribution. (English) Zbl 1475.60023

Summary: In addition to the features of the two-parameter Chinese restaurant process (CRP), the restaurant under consideration has a cocktail bar and hence allows for a wider range of (bar and table) occupancy mechanisms. The model depends on three real parameters, \( \alpha\), \(\theta_1\), and \(\theta_2\), fulfilling certain conditions. Results known for the two-parameter CRP are carried over to this model. We study the number of customers at the cocktail bar, the number of customers at each table, and the number of occupied tables after \(n\) customers have entered the restaurant. For \(\alpha>0\) the number of occupied tables, properly scaled, is asymptotically three-parameter Mittag-Leffler distributed as \(n\) tends to infinity. We provide representations for the two- and three-parameter Mittag-Leffler distribution leading to efficient random number generators for these distributions. The proofs draw heavily from methods known for exchangeable random partitions, martingale methods known for generalized Pólya urns, and results known for the two-parameter CRP.

MSC:

60C05 Combinatorial probability
60F05 Central limit and other weak theorems
60J10 Markov chains (discrete-time Markov processes on discrete state spaces)
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Aldous, D. J. (1985). Exchangeability and Related Topics (Lect. Notes Math. 1117). Springer, New York. · Zbl 0562.60042
[2] Antoniak, C. E. (1974). Mixtures of Dirichlet processes with applications to Bayesian nonparametric problems. Ann. Statist.2, 1152-1174. · Zbl 0335.60034
[3] Billingsley, P. (1995). Probability and Measure, 3rd edn. Wiley, New York. · Zbl 0822.60002
[4] Blackwell, D. and Macqueen, J. B. (1973). Ferguson distributions via Pólya urn schemes. Ann. Statist.1, 353-355. · Zbl 0276.62010
[5] Chambers, J. M., Mallows, C. L. and Stuck, B. W. (1976). A method for simulating stable random variables. J. Am. Stat. Assoc.71, 340-344. · Zbl 0341.65003
[6] Devroye, L. (1986). Non-Uniform Random Variate Generation. Springer, New York. · Zbl 0593.65005
[7] Donnelly, P. J. (1986). Partition structures, Pólya urns, the Ewens sampling formula and the ages of alleles. Theor. Popul. Biol.30, 271-288. · Zbl 0608.92005
[8] Ewens, W. J. (1972). The sampling theory of selectively neutral alleles. Theor. Popul. Biol.3, 87-112. · Zbl 0245.92009
[9] Feller, W. (1971). An Introduction to Probability and Its Applications, Vol. II. Wiley, New York. · Zbl 0219.60003
[10] Flajolet, P., Dumas, P. and Puyhaubert, V. (2006). Some exactly solvable models of urn process theory. Discrete Math. Theor. Comp. Sci. AG, 59-118. · Zbl 1193.60011
[11] Green, P. J. (2010). Colouring and breaking sticks: Random distributions and heterogeneous clustering. In Probability and Mathematical Genetics: Papers in Honour of Sir John Kingman, eds. Bingham, N. H. and Goldie, C. M.. Cambridge University Press, pp. 319-344. · Zbl 1394.60027
[12] Hoppe, F. M. (1984). Pólya-like urns and the Ewens sampling formula. J. Math. Biol.20, 91-94. · Zbl 0547.92009
[13] Hoppe, F. M. (1987). The sampling theory of neutral alleles and an urn model in population genetics. J. Math. Biol.25, 123-159. · Zbl 0636.92007
[14] Hsu, L. C. and Shiue, P. J.-S. (1998). A unified approach to generalized Stirling numbers. Adv. Appl. Math.20, 366-384. · Zbl 0913.05006
[15] Ibragimov, I. A. and Chernin, K. E. (1959). On the unimodality of stable laws. Teor. Veroyatnost. i Primenen 4, 453-456. English translation: Theor. Prob. Appl.4, 417-419 (1959). · Zbl 0089.13904
[16] James, L. F. (2002). Poisson process partition calculus with applications to exchangeable models and Bayesian nonparametrics. arXiv:math/0205093.
[17] James, L. F. (2005). Bayesian Poisson process partition calculus with an application to Bayesian Lévy moving averages. Ann. Statist.33, 1771-1799. · Zbl 1078.62106
[18] Janson, S. (2004). Functional limit theorems for multitype branching processes and generalized Pólya urns. Stoch. Proc. Appl.110, 177-245. · Zbl 1075.60109
[19] Janson, S. (2006). Limit theorems for triangular urn schemes. Prob. Theory Relat. Fields134, 417-452. · Zbl 1112.60012
[20] Kallenberg, O. (2002). Foundations of Modern Probability, 2nd edn. Springer, New York. · Zbl 0996.60001
[21] Kanter, M. (1975). Stable densities under change of scale and total variation inequalities. Ann. Prob.3, 697-707. · Zbl 0323.60013
[22] Kingman, J. F. C. (1978). Random partitions in population genetics. Proc. R. Soc. London A, 361, 1-20. · Zbl 0393.92011
[23] Lo, A. Y., Brunner, L. J. and Chan, A. T. (1996). Weighted Chinese restaurant processes and Bayesian mixture models. Research report, Hong Kong University of Science and Technology. Available at http://www.utstat.utoronto.ca/ brunner/papers/wcr96.pdf.
[24] Mikusiński, J. (1959). On the function whose Laplace transform is \(\text{e}^{-s^a} \) . Studia Math.18, 191-198. · Zbl 0087.10501
[25] Möhle, M. (2006). On sampling distributions for coalescent processes with simultaneous multiple collisions. Bernoulli12, 35-53. · Zbl 1099.92052
[26] Petrov, V. V. (1975). Sums of Independent Random Variables. Springer, Berlin. · Zbl 0322.60043
[27] Pitman, J. (1995). Exchangeable and partially exchangeable random partitions. Prob. Theory Relat. Fields102, 145-158. · Zbl 0821.60047
[28] Pitman, J. (1996). Random discrete distributions invariant under size-biased permutation. Adv. Appl. Prob.28, 525-539. · Zbl 0853.62018
[29] Pitman, J. (2003). Poisson-Kingman partitions. In Statistics and Science: A Festschrift for Terry Speed, eds. Speed, T. P. and Goldstein, D. R. (IMS Lect. Notes Monogr. Ser. 40). Institute of Mathematical Statistics, Beechwood, OH, pp. 1-34.
[30] Pitman, J. (2006). Combinatorial Stochastic Processes (Lect. Notes Math. 1875). Springer, Berlin. · Zbl 1103.60004
[31] Pitman, J. and Yor, M. (1997). The two-parameter Poisson-Dirichlet distribution derived from a stable subordinator. Ann. Prob.25, 855-900. · Zbl 0880.60076
[32] Prabhakar, T. R. (1971). A singular integral equation with a generalized Mittag-Leffler function in the kernel. Yokohama Math. J.19, 7-15. · Zbl 0221.45003
[33] Schmelzer, T. and Trefethen, L. N. (2007). Computing the gamma function using contour integrals and related approximations. SIAM J. Numer. Anal.45, 558-571. · Zbl 1153.65026
[34] Siegmund, D. (1976). The equivalence of absorbing and reflecting barrier problems for stochastically monotone Markov processes. Ann. Prob.4, 914-924. · Zbl 0364.60109
[35] Stanković, B. (1954). Sur une fonction du calcul opérationnel. Acad. Serbe Sci. Pub. Inst. Math.6, 75-78. · Zbl 0056.10301
[36] Stanković, B. (1970). On the function of E. M. Wright. Pub. Inst. Math. Beograd N.S.10, 113-124. · Zbl 0204.08404
[37] Steutel, F. W. and Van Harn, K. (2004). Infinite Divisibility of Probability Distributions on the Real Line. Marcel Dekker Inc., New York. · Zbl 1063.60001
[38] Temme, N. M. (1978). The Numerical Computation of Special Functions by Use of Quadrature Rules for Saddle Point Integrals. II. Gamma Functions, Modified Bessel Functions and Parabolic Cylinder Functions. Mathematisch Centrum, Afdeling Toegepaste Wiskunde, Amsterdam. · Zbl 0436.65008
[39] Temme, N. M. (1996). Special Functions. Wiley, New York. · Zbl 0856.33001
[40] Tomovski, Ž., Pogány, T. K. and Srivastava, H. M. (2014). Laplace type integral expressions for a certain three-parameter family of generalized Mittag-Leffler functions with applications involving complete monotonicity. J. Franklin Inst.351, 5437-5454. · Zbl 1393.93060
[41] Trieb, G. (1992). A Pólya urn model and the coalescent. J. Appl. Prob.29, 1-10. · Zbl 0756.92018
[42] Zhang, P., Chen, C. and Mahmoud, H. (2015). Explicit characterization of moments of balanced triangular Pólya urns by an elementary approach. Statist. Prob. Lett.96, 149-153. · Zbl 1314.60040
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.