×

Periodic boundary value problem in Hilbert space for differential equation of second order with reflection of the argument. (English) Zbl 0744.34062

Author’s abstract: “The differential equation \(-x''+a^ 2x+f(t,x(t),x(- t))=h(t)\) with periodic boundary conditions is studied. The existence of a solution in case when \(f\) is a completely continuous operator and in case when \(f\) is only continuous and bounded is proved. The connectedness of the set of solutions is studied”.
Reviewer: J.F.Toland (Bath)

MSC:

34G20 Nonlinear differential equations in abstract spaces
34B15 Nonlinear boundary value problems for ordinary differential equations
34C25 Periodic solutions to ordinary differential equations
PDF BibTeX XML Cite
Full Text: EuDML

References:

[1] GUPTA, CHAITAN P.: Boundary value problems for differential equations in Hilbert spaces involving reflection of the argument. J, Math. Anal. Appl. 128 (1987), 375-388. · Zbl 0658.34053
[2] HARDY G. H., LITTLEWOOD J. E., POLYA G.: Inequalities. Camgridge University Press, London-New York, 1952. · Zbl 0047.05302
[3] KUFNER A., FUČÍK S.: Nelineární diferenciální rovnice. SNTL, Praha, 1978. · Zbl 0474.35001
[4] REKTORYS K.: Variační metody v inženýrských problémech a v problémech matematické fyziky. SNTL, Praha, 1974. · Zbl 0371.35001
[5] DEIMLING K.: Ordinary Differential Equations in Banach Spaces. Springer-Verlag, Berlin-Heidelberg-New York, 1977. · Zbl 0361.34050
[6] SCHMITT K., THOMPSON R.: Boundary value problems for infinite systems of second-order differential equations. J. Differential Equations 18 (1975), 277-295. · Zbl 0302.34081
[7] ZEIDLER E.: Vorlesungen über nichtlineare Funktionalanalysis I. Teubner Verlag, Leipzig, 1976. · Zbl 0326.47053
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.