zbMATH — the first resource for mathematics

The \(K\)-moment problem for compact semi-algebraic sets. (English) Zbl 0744.44008
Suppose \(K\) is a closed subset of \(\mathbb{R}^ d\). A function \(f: \mathbb{N}^ d_ 0\to R\) is called a \(K\)-moment sequences if there exists a positive Borel measure \(\mu\in M(\mathbb{R}^ d)\) supported by \(K\) such that \(f(\alpha)\) is the \(\alpha\)-th moment of \(\mu\), i.e., \(f(\alpha)=\int x^ \alpha d\mu\), \(\forall\alpha\in\mathbb{N}^ d_ 0\). The main result of this note characterizes the \(K\)-moment sequences for compact semi- algebraic sets \(K\). Theorem 1 subsumes the above and proves a conjecture of Berg and Maserick [see C. Berg, Moments in mathematics. AMS Short Course, San Antonia/Tex. 1987, Proc. Symp. Appl. Math. 37, 110-124 (1987; Zbl 0636.44007)].

44A60 Moment problems
14P10 Semialgebraic sets and related spaces
Full Text: DOI EuDML
[1] Atzmon, A.: A moment problem for positive measures. Pac. J. Math.59, 317-325 (1975) · Zbl 0319.44009
[2] Berg, C.: The multidimensional moment problem and semigroups. In: Landau, H.J. (ed.) Moments in mathematics. Proc. Symp. Appl. Math., vol. 37, pp. 110-124. Am. Math. Soc., Providence, 1987 · Zbl 0636.44007
[3] Bochnak, J., Coste, M., Roy, M.-F.: Géométrie algébrique réelle. Berlin Heidelberg New York: Springer 1987
[4] Berg, C., Maserick, P.H.: Polynomially positive definite sequences. Math. Ann.259, 487-495 (1982) · Zbl 0486.44004 · doi:10.1007/BF01466054
[5] Cassier, G.: Problème des moments sur un compact deR n et décomposition de polynômes a plusiers variables. J. Funct. Anal.58, 254-266 (1984) · Zbl 0556.44006 · doi:10.1016/0022-1236(84)90042-9
[6] Fuglede, B.: The multidimensional moment problem. Expo. Math.1, 47-65 (1983) · Zbl 0514.44006
[7] McGregor, J.L.: Solvability criteria for certainN-dimensional moment problem. J. Approx. Theory30, 315-333 (1980) · Zbl 0458.41025 · doi:10.1016/0021-9045(80)90034-9
[8] Nussbaum, A.E.: Quasi-analytic vectors. Ark. Mat.6, 179-191 (1965) · Zbl 0182.46102 · doi:10.1007/BF02591357
[9] Stengle, G.: A Nullstellensatz and a Positivstellensatz in semialgebraic geometry. Math. Ann.207, 87-97 (1974) · Zbl 0263.14001 · doi:10.1007/BF01362149
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.