zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Nonlinear resonant scattering and plasma instability: An integrable model. (English) Zbl 0744.76056
Summary: A detailed study of a system of coupled waves is given for which an initial-boundary value problem is solved by means of the spectral transform theory. This system represents the nonlinear interaction of an electrostatic high-frequency wave with the ion acoustic wave in a two component homogeneous plasma. As a result the plasma instability is understood as (i) a continuous secular transfer of energy from the laser beam to the acoustic wave, (ii) the evolution toward the formation of local singularities of the electrostatic wave (collapsing), (iii) a mutual trapping of the acoustic wave and the scattered Langmuir wave.

76E25Stability and instability of magnetohydrodynamic and electrohydrodynamic flows
76E30Nonlinear effects (fluid mechanics)
76X05Ionized gas flow in electromagnetic fields; plasmic flow
Full Text: DOI