Fitzpatrick, Ben G.; Fleming, Wendell H. Numerical methods for an optimal investment-comsumption model. (English) Zbl 0744.90003 Math. Oper. Res. 16, No. 4, 823-841 (1991). Summary: This paper examines some numerical techniques for an investment/consumption problem considered previously by the second author and T. Zariphopoulou [ibid. 16, No. 4, 802-822 (1992; Zbl 0744.90004)]. The value function \(v(x)\) satisfies the differential equation of dynamic programming for \(x>0\). Special monotonicity and concavity features of the problem allow us to prove convergence not only of discrete approximations to \(v(t)\), but of the corresponding discrete approximations to optimal investment and consumption policies. Cited in 13 Documents MSC: 91B28 Finance etc. (MSC2000) 91B62 Economic growth models 49L20 Dynamic programming in optimal control and differential games 93E20 Optimal stochastic control 60H10 Stochastic ordinary differential equations (aspects of stochastic analysis) Keywords:investment/consumption; discrete approximations Citations:Zbl 0744.90004 PDF BibTeX XML Cite \textit{B. G. Fitzpatrick} and \textit{W. H. Fleming}, Math. Oper. Res. 16, No. 4, 823--841 (1991; Zbl 0744.90003) Full Text: DOI OpenURL