zbMATH — the first resource for mathematics

A nonlinear structured population model of tumor growth with quiescence. (English) Zbl 0744.92026
Summary: A nonlinear structured cell population model of tumor growth is considered. The model distinguishes between two types of cells within the tumor: proliferating and quiescent. Within each class the behavior of individual cells depends on cell size, whereas the probabilities of becoming quiescent and returning to the proliferative cycle are in addition controlled by total tumor size. The asymptotic behavior of solutions of the full nonlinear model, as well as some linear special cases, is investigated using spectral theory of positive semigroups of operators.

92D25 Population dynamics (general)
47D03 Groups and semigroups of linear operators
35Q92 PDEs in connection with biology, chemistry and other natural sciences
92C50 Medical applications (general)
35B40 Asymptotic behavior of solutions to PDEs
47F05 General theory of partial differential operators (should also be assigned at least one other classification number in Section 47-XX)
47N60 Applications of operator theory in chemistry and life sciences
Full Text: DOI
[1] Arendt, W., Grabosch, A., Greiner, G., Groh, U., Lotz, H.P., Moustakis, U., Nagel, R., Neubrander, F., Schlotterbeck, U.: One-parameter semigroups of positive operators. In: Nagel, R. (ed.) (Lect. Notes Math., vol. 1184) Berlin Heidelberg New York Tokyo: Springer 1986
[2] Arino, O., Kimmel, M.: Asymptotic analysis of a cell-cycle model based on unequal division. SIAM J. Appl. Math. 47, 128–145 (1987) · Zbl 0632.92015 · doi:10.1137/0147008
[3] Arino, O., Kimmel, M.: Asymptotic behavior of a nonlinear functional-integral equation of cell kinetics with unequal division. J. Math. Biol. 27, 341–354 (1989) · Zbl 0715.92011
[4] Bell, G. I., Anderson, E. C.: Cell growth and division. I. A mathematical model with applications to cell volume distributions in mammalian suspension cultures. Biophys. J. 7, 329–351 (1967) · doi:10.1016/S0006-3495(67)86592-5
[5] Burton, A. C.: Rate of growth of solid tumours as a problem of diffusion. Growth 30, 157–176 (1966)
[6] ClĂ©ment, Ph., Heijmans, H. J. A. M., Angenent, S., van Duijn, C. J., de Pagter, B.: One-parameter semigroups. Amsterdam New York: North-Holland 1987 · Zbl 0636.47051
[7] Diekmann, O., Heijmans, H. J. A. M., Thieme, H. R.: On the stability of the cell size distribution. J. Math. Biol. 19, 227–248 (1984) · Zbl 0543.92021 · doi:10.1007/BF00277748
[8] Diekmann, O., Heijmans, H. J. A. M., Thieme, H. R.: On the stability of the cell size distribution II. In: Witten, M. (ed.) Hyperbolic partial differential equations III. Inter. Series in Modem Appl. Math. Computer Science, vol. 12, pp. 491–512. Oxford New York: Pergamon Press 1986 · Zbl 0667.92015
[9] Eisen, M.: Mathematical models in cell biology and cancer chemotherapy. (Lect. Notes Biomath., vol. 30) Berlin Heidelberg New York: Springer 1979 · Zbl 0414.92005
[10] Frenzen, C., Murray, J.: A cell kinetics justification for Gompertz’ equation. SIAM J. Appl. Math. 46, 614–629 (1986) · Zbl 0608.92012 · doi:10.1137/0146042
[11] Greiner, G., Nagel, R.: Growth of cell populations via one-parameter semigroups of positive operators, pp. 79–105. In: Mathematics Applied to Science. New York: Academic Press 1985
[12] Gyllenberg, M.: The size and scar distributions of the yeast saccharomyces cerevisiae. J. Math. Biol. 24, 81–101 (1986) · Zbl 0593.92016
[13] Gyllenberg, M., Webb, G. F.: Age-size structure in populations with quiescence. Math. Biosci. 86, 67–95 (1987) · Zbl 0632.92014 · doi:10.1016/0025-5564(87)90064-2
[14] Gyllenberg, M., Webb, G. F.: Quiescence as an explanation of Gompertzian tumor growth. Growth, Development, and Aging 53, 25–33 (1989)
[15] Kimmel, M., Darzynkiewicz, Z., Arino, O., Traganos, F.: Analysis of a model of cell cycle based on unequal division of mitotic constituents to daughter cells during cytokinesis. J. Theor. Biol. 101, 637–664 (1984) · doi:10.1016/S0022-5193(84)80149-6
[16] Lasota, A., Mackey, M. C.: Globally asymptotic properties of proliferating cell populations. J. Math. Biol. 19, 43–62 (1984) · Zbl 0529.92011 · doi:10.1007/BF00275930
[17] Martin, R. H.: Nonlinear operators and differential equations in Banach spaces. New York: Wiley 1976 · Zbl 0333.47023
[18] Martinez, A. O., Griego, R. J.: Growth dynamics of multicell spheroids from three murine tumors. Growth 44, 112–122 (1980)
[19] Metz, J. A. J., Diekmann, O.: The dynamics of physiologically structured populations. (Lect. Notes Biomath, vol. 68) Berlin Heidelberg New York Tokyo: Springer 1986 · Zbl 0614.92014
[20] Nagel, R.: Well-posedness and positivity for systems of linear evolution equations. Conferenze del Siminario di Matematica Bara 203, 1–29 (1985) · Zbl 0596.35059
[21] Pazy, A.: Semigroups of linear operators and applications to partial differential equations. Berlin Heidelberg New York: Springer 1983 · Zbl 0516.47023
[22] Rotenberg, M.: Correlations, asymptotic stability and the G 0 theory of the cell cycle. In: Valleron, A.-J., Macdonald, P. D. M. (eds.) Biomathematics and cell kinetics, development in cell Biology, vol. 2, pp. 59–69. Amsterdam New York: Elsevier/North-Holland Biomedical Press 1978
[23] Rotenberg, M.: Theory of distributed quiescent state in the cell cycle. J. Theor. Biol. 96, 495–509 (1982) · doi:10.1016/0022-5193(82)90123-0
[24] Rubinow, S.: Age-structured equations in the theory of cell populations. In: Levin, S. A. (ed.) Studies in mathematical biology, vol. 16, part II. Populations and Communities, pp. 389–410. The Mathematical Association of America 1978
[25] Sinko, J. W., Streifer, W.: A model for population reproducing by fission. Ecology 52, 330–335 (1971) · doi:10.2307/1934592
[26] Tannock, I. F.: The relation between cell proliferation and the vascular system in a transplanted mouse mammary tumour. Br. J. Cancer 22, 258–273 (1968) · doi:10.1038/bjc.1968.34
[27] Tsuchiya, H. M., Fredrickson, A. G., Aris, R.: Dynamics of microbial cell populations, Advan. Chem. Engineering 6, 125–198 (1966) · doi:10.1016/S0065-2377(08)60275-6
[28] Tubiana, M.: The kinetics of tumour cell proliferation and radiotherapy. Br. J. Radiology 44, 325–347 (1971) · doi:10.1259/0007-1285-44-521-325
[29] Tucker, S. L., Zimmerman, S. O. A nonlinear model of population dynamics containing an arbitrary number of continuous variables. SIAM J. Appl. Math. 48, 549–591 (1988) · Zbl 0657.92011 · doi:10.1137/0148032
[30] Tyson, J., Hannsgen, K.: Cell growth and division: global asymptotic stability of the size distribution in probabilistic models of the cell cycle. J. Math. Biol. 23, 231–246 (1986) · Zbl 0582.92020 · doi:10.1007/BF00276959
[31] van der Mee, C., Zweifel, P.: A Fokker-Planck equation for growing cell populations. J. Math. Biol. 25, 61–72 (1987) · Zbl 0644.92019 · doi:10.1007/BF00275888
[32] Webb, G. F.: Random transition, size control, and inheritance in cell population dynamics. Math. Biosci. 85, 71–91 (1987) · Zbl 0633.92009 · doi:10.1016/0025-5564(87)90100-3
[33] Webb, G., Grabosch, A.: Asynchronous exponential growth in transition probability models of the cell cycle. SIAM J. Math. Anal. 18, 897–907 (1987) · Zbl 0625.92013 · doi:10.1137/0518068
[34] White, R.: A review of some mathematical models in cell kinetics. In: Rotenbewrg, M. (ed.) Biomathematics of cell kinetics, developments in cell biology, vol. 8, pp. 243–261. Amsterdam New York: Elsevier/North-Holland Biomedical Press 1981
[35] Witten, M.: Modeling cellular systems and aging processes: II. Some thoughts on describing an asynchronously dividing cellular system, pp. 1023–1035. Nonlinear Phenomena in Mathematical Sciences. New York: Academic Press 1982 · Zbl 0598.92008
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.