×

A local collocation method with radial basis functions for an electrospinning problem. (English) Zbl 07440020

Summary: Electrospinning is a technique used to fabricate fibrillar materials for different applications. Understanding this process allows companies to reduce efforts and to have better control of the variables present in this phenomenon. A mathematical model is described in this article for Newtonian, Giesekus, FENE-P, and Oldroyd-B approaches. This was done by using radial basis functions through a localized collocation method that has not been used before to solve this kind of problems. The solutions of the viscoelastic and electric behavior were compared with a Python solver and with a previously obtained solution by other researchers. The rheological models, showed that they can be applied according to the size of fluid polymer chains. Thus, the Giesekus model rheologically describes more accurately fluids with small polymer chains, the FENE-P model describes larger polymer chains with low extensibility, and Oldroyd-B model describes same particles as FENE-P but with infinite extensibility. An interesting case of coil-stretching was obtained using the FENE-P model where the fluid becomes Newtonian while the relaxation time increases. In conclusion, The results show that by decreasing the tensile force in the jet, thinner fibers can be obtained and this can be controlled experimentally by using polymers with low molecular weight.

MSC:

76-XX Fluid mechanics
92-XX Biology and other natural sciences
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Zong, H.; Xia, X.; Liang, Y.; Dai, S.; Alsaedi, A.; Hayat, T.; Kong, F.; Pan, J. H., Designing function-oriented artificial nanomaterials and membranes via electrospinning and electrospraying techniques, Mater Sci Eng C (2018)
[2] Cao, M.; Gu, F.; Rao, C.; Fu, J.; Zhao, P., Improving the electrospinning process of fabricating nanofibrous membranes to filter PM2.5, Sci Total Environ (2019)
[3] Munir, N.; McDonald, A.; Callanan, A., A combinatorial approach: Cryo-printing and electrospinning hybrid scaffolds for cartilage tissue engineering, Bioprinting (2019)
[4] Wang, L.; Liu, F.; Shao, W.; Cui, S.; Zhao, Y.; Zhou, Y.; He, J., Graphite oxide dopping polyimide nanofiber membrane via electrospinning for high performance lithium-ion batteries, Compos Commun (2019)
[5] Doshi, J.; Reneker, D. H., Electrospinning process and applications of electrospun fibers, J Electrost (1995)
[6] Bhardwaj, N.; Kundu, S. C., Electrospinning: A fascinating fiber fabrication technique, Biotechnol Adv (2010)
[7] Lukáš, D.; Sarkar, A.; Martinová, L.; Vodsed’álková, K.; Lubasová, D.; Chaloupek, J.; Pokorný, P.; Mikeš, P.; Chvojka, J.; Komárek, M., Physical principles of electrospinning (electrospinning as a nano-scale technology of the twenty-first century), Text Prog (2009)
[8] Kaur, S.; Sundarrajan, S.; Rana, D.; Matsuura, T.; Ramakrishna, S., Influence of electrospun fiber size on the separation efficiency of thin film nanofiltration composite membrane, J Membr Sci (2012)
[9] Kulkarni, A.; Bambole, V. A.; Mahanwar, P. A., Electrospinning of polymers, their modeling and applications, Polymer - Plast Technol Eng (2010)
[10] Spivak, A. F.; Dzenis, Y. A.; Reneker, D. H., Model of steady state jet in the electrospinning process, Mech Res Commun (2000) · Zbl 0969.76607
[11] Hohman, M. M.; Shin, M.; Rutledge, G.; Brenner, M. P., Electrospinning and electrically forced jets. I. Stability theory, Phys Fluids (2001) · Zbl 1184.76226
[12] Feng, J. J., Stretching of a straight electrically charged viscoelastic jet, J Non-Newton Fluid Mech (2003) · Zbl 1088.76573
[13] Carroll, C. P.; Joo, Y. L., Electrospinning of viscoelastic boger fluids: Modeling and experiments, Phys Fluids (2006)
[14] Reneker, D. H.; Yarin, A. L.; Fong, H.; Koombhongse, S., Bending instability of electrically charged liquid jets of polymer solutions in electrospinning, J Appl Phys (2000)
[15] Yarin, A. L.; Koombhongse, S.; Reneker, D. H., Bending instability in electrospinning of nanofibers, J Appl Phys (2001)
[16] Weimin, K.; Hao, L.; Lei, L.; Yixia, Z.; Bowen, C., Simulation of electric field intensity and electrostatic force in electrospinning system using finite element method, Int J Digit Content Technol Appl (2013)
[17] Wang, X.; Liu, Y.; Zhang, C.; An, Y.; He, X.; Yang, W., Simulation on electrical field distribution and fiber falls in melt electrospinning, J Nanosci Nanotechnol (2013)
[18] Constantin, C.; Croitoru, S. M.; Constantin, G.; Strǎjescu, E., FEM tools for cutting process modelling and simulation, UPB Sci Bull D (2012)
[19] Peters, G.; Hulsen, M.; Solberg, R., A model for electrospinning viscoelastic fluids, MateTueNl (2007)
[20] Rahei, S.; Maghsoodloo, S.; Saberi, M.; Lotfi, S.; Motaghttalab, V.; Noroozi, B.; Haghi, A. K., New horizons in modeling and simulation of electrospun nanofibers: A detailed review, Cellul Chem Technol (2014)
[21] Florez, W. F.; Bustamante, C. A.; Giraldo, M.; Hill, A. F., Local mass conservative Hermite interpolation for the solution of flow problems by a multi-domain boundary element approach, Appl Math Comput (2012) · Zbl 1408.76136
[22] Bustamante, C. A.; Power, H.; Sua, Y. H.; Florez, W. F., A global meshless collocation particular solution method (integrated Radial Basis Function) for two-dimensional Stokes flow problems, Appl Math Model (2013) · Zbl 1270.76020
[23] Orsini, P.; Power, H.; Lees, M.; Morvan, H., A control volume radial basis function techniques for the numerical simulation of saturated flows in semi-confined aquifer, Transp Porous Media (2009)
[24] Granados, J. M.; Power, H.; Bustamante, C. A.; Flórez, W. F.; Hill, A. F., A global particular solution meshless approach for the four-sided lid-driven cavity flow problem in the presence of magnetic fields, Comput & Fluids (2018) · Zbl 1390.76673
[25] Brooks, H.; Tucker, N., Electrospinning predictions using artificial neural networks, Polymer (2015)
[26] Mohammadi, M.; Mohammadi, N.; Mehdipour-Ataei, S., On the preparation of thin nanofibers of polysulfone polyelectrolyte for improving conductivity of proton-exchange membranes by electrospinning: Taguchi design, response surface methodology, and genetic algorithm, Int J Hydrogen Energy, 45, 58, 34110-34124 (2020)
[27] Yao, Y.; Dai, L.; Jiang, F.; Liao, W.; Dong, M.; Yang, X., Kinetic modeling of novel solid desiccant based on PVA-LiCl electrospun nanofibrous membrane, Polym Test, 64, 183-193 (2017)
[28] Rafiei, S.; Maghsoodloo, S.; Noroozi, B.; Mottaghitalab, V.; Haghi, A., Mathematical modeling in electrospinning process of nanofibers: a detailed review, Cellul Chem Technol, 47, 5, 323-338 (2013)
[29] Bird, R. B.; Armstrong, R. C.; Hassager, O., Dynamics of polymeric liquids. Vol. 1: Fluid mechanics (1987), Wiley Interscience
[30] Popov, V.; Power, H., A domain decomposition on the dual reciprocity approach, Bound Elem Commun (1996)
[31] Bustamante, C. A.; Power, H.; Florez, W. F., An efficient accurate local method of approximate particular solutions for solving convection-diffusion problems, Eng Anal Bound Elem (2014) · Zbl 1297.65193
[32] Dehghan, M.; Nikpour, A., Numerical solution of the system of second-order boundary value problems using the local radial basis functions based differential quadrature collocation method, Appl Math Model, 37, 18, 8578-8599 (2013), URL: http://www.sciencedirect.com/science/article/pii/S0307904X1300228X · Zbl 1426.65113
[33] Hon, Y.; Schaback, R., On unsymmetric collocation by radial basis functions, Appl Math Comput, 119, 2-3, 177-186 (2001) · Zbl 1026.65107
[34] Zerroukat, M.; Power, H.; Chen, C. S., A numerical method for heat transfer problems using collocation and radial basis functions, Internat J Numer Methods Engrg, 42, 7, 1263-1278 (1998) · Zbl 0907.65095
[35] Fornberg, B.; Lehto, E., Stabilization of RBF-generated finite difference methods for convective PDEs, J Comput Phys, 230, 6, 2270-2285 (2011) · Zbl 1210.65154
[36] Shampine, L.; Muir, P.; Xu, H., A user-friendly fortran BVP solver, J Numer Anal Ind Appl Math, 1, 2, 201-217 (2006) · Zbl 1117.65114
[37] Russo, G.; Capasso, V.; Nicosia, G.; Romano, V., Progress in industrial mathematics at ECMI 2014 (2016), Springer · Zbl 1388.00020
[38] Ullah, M. Z., An RBF-FD sparse scheme to simulate high-dimensional Black-Scholes partial differential equations, Comput Math Appl, 79, 2, 426-439 (2020), URL: https://www.sciencedirect.com/science/article/pii/S0898122119303499 · Zbl 1443.91334
[39] Dehghan, M.; Mohammadi, V., The numerical solution of Cahn-Hilliard (CH) equation in one, two and three-dimensions via globally radial basis functions (GRBFs) and RBFs-differential quadrature (RBFs-DQ) methods, Eng Anal Bound Elem, 51, 74-100 (2015), URL: https://www.sciencedirect.com/science/article/pii/S0955799714002501 · Zbl 1403.65085
[40] Golbabai, A.; Kalarestaghi, N., Improved localized radial basis functions with fitting factor for dominated convection-diffusion differential equations, Eng Anal Bound Elem, 92, 124-135 (2018), URL: https://www.sciencedirect.com/science/article/pii/S0955799717303521. Improved Localized and Hybrid Meshless Methods - Part 1 · Zbl 1403.65157
[41] Loeffler, C. F.; Galimberti, R.; de Melo Barcelos, H., A self-regularized Scheme for solving Helmholtz problems using the boundary element direct integration technique with radial basis functions, Eng Anal Bound Elem, 118, 11-19 (2020), URL: https://www.sciencedirect.com/science/article/pii/S0955799720301442 · Zbl 1464.65240
[42] Oruç, O., A local radial basis function-finite difference (RBF-FD) method for solving 1D and 2D coupled Schrödinger-Boussinesq (SBq) equations, Eng Anal Bound Elem, 129, 55-66 (2021), URL: https://www.sciencedirect.com/science/article/pii/S0955799721001041 · Zbl 07371639
[43] Dehghan, M.; Abbaszadeh, M., Solution of multi-dimensional Klein-Gordon-zakharov and Schrödinger/Gross-Pitaevskii equations via local Radial Basis Functions-Differential Quadrature (RBF-DQ) technique on non-rectangular computational domains, Eng Anal Bound Elem, 92, 156-170 (2018), URL: https://www.sciencedirect.com/science/article/pii/S0955799717302618. Improved Localized and Hybrid Meshless Methods - Part 1 · Zbl 1403.78037
[44] Ebrahimijahan, A.; Dehghan, M.; Abbaszadeh, M., Compact local integrated radial basis functions (Integrated RBF) method for solving system of non-linear advection-diffusion-reaction equations to prevent the groundwater contamination, Eng Anal Bound Elem, 121, 50-64 (2020), URL: https://www.sciencedirect.com/science/article/pii/S095579972030237X · Zbl 1464.65139
[45] Hajiketabi, M.; Abbasbandy, S., The combination of meshless method based on radial basis functions with a geometric numerical integration method for solving partial differential equations: Application to the heat equation, Eng Anal Bound Elem, 87, 36-46 (2018), URL: https://www.sciencedirect.com/science/article/pii/S0955799716301904 · Zbl 1403.65090
[46] Kindelan, M.; Bayona, V., Application of the RBF meshless method to laminar flame propagation, Eng Anal Bound Elem, 37, 12, 1617-1624 (2013), URL: https://www.sciencedirect.com/science/article/pii/S0955799713001811 · Zbl 1287.80005
[47] Mramor, K.; Vertnik, R.; Šarler, B., Application of the local RBF collocation method to natural convection in a 3D cavity influenced by a magnetic field, Eng Anal Bound Elem, 116, 1-13 (2020), URL: https://www.sciencedirect.com/science/article/pii/S0955799720300977 · Zbl 1464.76133
[48] Zhang, X.; Yao, L., Numerical approximation of time-dependent fractional convection-diffusion-wave equation by RBF-FD method, Eng Anal Bound Elem, 130, 1-9 (2021), URL: https://www.sciencedirect.com/science/article/pii/S0955799721001132 · Zbl 07371646
[49] Anshuman, A.; Eldho, T.; Singh, L. G., Simulation of reactive transport in porous media using radial point collocation method, Eng Anal Bound Elem, 104, 8-25 (2019), URL: https://www.sciencedirect.com/science/article/pii/S0955799718304405 · Zbl 1464.76129
[50] Liu, Q.; Mu, S.; Liu, Q.; Liu, B.; Bi, X.; Zhuang, P.; Li, B.; Gao, J., An RBF based meshless method for the distributed order time fractional advection-diffusion equation, Eng Anal Bound Elem, 96, 55-63 (2018), URL: https://www.sciencedirect.com/science/article/pii/S0955799718300419 · Zbl 1403.65096
[51] Parand, K.; Abbasbandy, S.; Kazem, S.; Rad, J., A novel application of radial basis functions for solving a model of first-order integro-ordinary differential equation, Commun Nonlinear Sci Numer Simul, 16, 11, 4250-4258 (2011), URL: https://www.sciencedirect.com/science/article/pii/S1007570411000955 · Zbl 1222.65150
[52] Mukhtar, F. M.; Al-Gahtani, H. J., Application of radial basis functions to the problem of elasto-plastic torsion of prismatic bars, Appl Math Model, 40, 1, 436-450 (2016), URL: https://www.sciencedirect.com/science/article/pii/S0307904X15003662 · Zbl 1443.74087
[53] Dehghan, M.; Shirzadi, M., Meshless simulation of stochastic advection-diffusion equations based on radial basis functions, Eng Anal Bound Elem, 53, 18-26 (2015), URL: https://www.sciencedirect.com/science/article/pii/S0955799714002847 · Zbl 1403.65086
[54] Porcu, E.; Daley, D. J.; Buhmann, M.; Bevilacqua, M., Radial basis functions with compact support for multivariate geostatistics, Stoch Environ Res Risk Assess, 27, 4, 909-922 (2013)
[55] Shin, B.-C.; Jung, J.-H., Spectral collocation and radial basis function methods for one-dimensional interface problems, Appl Numer Math, 61, 8, 911-928 (2011), URL: https://www.sciencedirect.com/science/article/pii/S0168927411000523 · Zbl 1219.65066
[56] Duan, Y.; Rong, F., A numerical scheme for nonlinear Schrödinger equation by MQ quasi-interpolation, Eng Anal Bound Elem, 37, 1, 89-94 (2013), URL: https://www.sciencedirect.com/science/article/pii/S0955799712001713 · Zbl 1352.65391
[57] Dehghan, M.; Shafieeabyaneh, N., Local radial basis function-finite-difference method to simulate some models in the nonlinear wave phenomena: regularized long-wave and extended Fisher-Kolmogorov equations, Eng Comput, 37, 2, 1159-1179 (2021)
[58] Assari, P.; Dehghan, M., A meshless method for the numerical solution of nonlinear weakly singular integral equations using radial basis functions, Eur Phys J Plus, 132, 5, 1-23 (2017)
[59] Feng, J., The stretching of an electrified non-Newtonian jet: A model for electrospinning, Phys Fluids, 14, 11, 3912-3926 (2002) · Zbl 1185.76123
[60] Reznik, S.; Yarin, A.; Zussman, E.; Bercovici, L., Evolution of a compound droplet attached to a core-shell nozzle under the action of a strong electric field, Phys Fluids, 18, 6, Article 062101 pp. (2006)
[61] Hashemi, A. R.; Pishevar, A. R.; Valipouri, A.; Părău, E. I., Numerical and experimental investigation on static electric charge model at stable cone-jet region, Phys Fluids, 30, 3, Article 037102 pp. (2018)
[62] Ruo, A.-C.; Chang, M.-H.; Chen, F., Electrohydrodynamic instability of a charged liquid jet in the presence of an axial magnetic field, Phys Fluids, 22, 4, Article 044102 pp. (2010) · Zbl 1190.76107
[63] Betelú, S.; Fontelos, M.; Kindelán, U.; Vantzos, O., Singularities on charged viscous droplets, Phys Fluids, 18, 5, Article 051706 pp. (2006)
[64] Karra, S., Modeling electrospinning process and a numerical scheme using Lattice Boltzmann method to simulate viscoelastic fluid flows (2010), Texas A & M University, (Ph.D. thesis)
[65] Lauricella, M.; Melchionna, S.; Montessori, A.; Pisignano, D.; Pontrelli, G.; Succi, S., Entropic lattice Boltzmann model for charged leaky dielectric multiphase fluids in electrified jets, Phys Rev E, 97, Article 033308 pp. (2018), URL: https://link.aps.org/doi/10.1103/PhysRevE.97.033308
[66] Li, H.; Chen, H.; Zhong, X.; Wu, W.; Ding, Y.; Yang, W., Interjet distance in needleless melt differential electrospinning with umbellate nozzles, J Appl Polym Sci, 131, 15 (2014)
[67] Gorji, M.; Jeddi, A. A.; Gharehaghaji, A.; Haghpanahi, M., Finite element modeling of electrospun nanofibre mesh using microstructure architecture analysis, Indian J Fibre Text Res (IJFTR), 42, 1, 83-88 (2017)
[68] Dayal, P.; Kyu, T., Dynamics and morphology development in electrospun fibers driven by concentration sweeps, Phys Fluids, 19, 10, Article 107106 pp. (2007) · Zbl 1182.76187
[69] Subbotin, A.; Stepanyan, R.; Chiche, A.; Slot, J.; Ten Brinke, G., Dynamics of an electrically charged polymer jet, Phys Fluids, 25, 10, Article 103101 pp. (2013)
[70] López-Herrera, J. M.; Gañán Calvo, A. M.; Herrada, M. A., Absolute to convective instability transition in charged liquid jets, Phys Fluids, 22, 6, Article 062002 pp. (2010) · Zbl 1190.76078
[71] Wijayanta, A. T.; Pranowo, A. M., A localized meshless approach using radial basis functions for conjugate heat transfer problems in a heat exchanger, Int J Refrig, 110, 38-46 (2020)
[72] Postawa, K.; Szczygieł, J.; Kułażyński, M., A comprehensive comparison of ODE solvers for biochemical problems, Renew Energy, 156, 624-633 (2020)
[73] Thomas, D.; Cerquaglia, M. L.; Boman, R.; Economon, T. D.; Alonso, J. J.; Dimitriadis, G.; Terrapon, V. E., CUPyDO-An integrated Python environment for coupled fluid-structure simulations, Adv Eng Softw, 128, 69-85 (2019)
[74] Khoshahval, F.; Akbari, M., A new method for the solution of the point kinetics equations in the presence of Newtonian temperature feedback, Prog Nucl Energy, 119, Article 103165 pp. (2020)
[75] Siraj-ul Islam, F.; Šarler, B.; Vertnik, R.; Kosec, G., Radial basis function collocation method for the numerical solution of the two-dimensional transient nonlinear coupled Burgers’ equations, Appl Math Model, 36, 3, 1148-1160 (2012) · Zbl 1243.76076
[76] Ansmann, G., Efficiently and easily integrating differential equations with JiTCODE, JiTCDDE, and JiTCSDE, Chaos, 28, 4, Article 043116 pp. (2018) · Zbl 1390.34005
[77] Li, J.; Nan, B., Simulating backward wave propagation in metamaterial with radial basis functions, Results Appl Math, 2, Article 100009 pp. (2019) · Zbl 1451.78043
[78] Shampine, L. F.; Corless, R. M., Initial value problems for ODEs in problem solving environments, J Comput Appl Math, 125, 1-2, 31-40 (2000) · Zbl 0971.65062
[79] Tanbay, T.; Ozgener, B., Fully meshless solution of the one-dimensional multigroup neutron transport equation with the radial basis function collocation method, Comput Math Appl, 79, 5, 1266-1286 (2020) · Zbl 1443.65395
[80] Khubi, Z.; Rafizadeh, M.; Karimineghlani, P., A mathematical model for electrospinning: Prediction of the nanofiber diameter, electric field, surface charge density and jet velocity, (International seminar on polymer science and technology (2011))
[81] Haider Adnan, Z.; Sajjad, M.; Kang, P.; Inn-Kyu, G., A comprehensive review summarizing the effect of electrospinning parameters and potential applications of nanofibers in biomedical and biotechnology, Arab J Chem, 11, 8, 1165-1188 (2018)
[82] Angammana, C. J.; Jayaram, S. H., Analysis of the effects of solution conductivity on electrospinning process and fiber morphology, IEEE Trans Ind Appl, 47, 3, 1109-1117 (2011)
[83] Metzner, A.; White, J.; Denn, M., Constitutive equations for viscoelastic fluids for short deformation periods and for rapidly changing flows: significance of the Deborah number, AIChE J, 12, 5, 863-866 (1966)
[84] Gadkari, S., Influence of polymer relaxation time on the electrospinning process: Numerical investigation, Polymers, 9, 10, 501 (2017)
[85] Ghosal, A.; Cherayil, B. J., Anomalies in the coil-stretch transition of flexible polymers, J Chem Phys, 148, 9, Article 094903 pp. (2018)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.