Waiting period from diagnosis for mortgage insurance issued to cancer survivors. (English) Zbl 1481.91186

Cancer patient survival has improved over the last few decades, with an increasing proportion of patients being cured for many types of cancer. Providing coverage in case cancer is diagnosed or to long-term cancer survivors is therefore of prime importance, for the society but also for the insurance industry since proper coverage of such risks may well produce attractive returns.
Authors of the paper analyze survival (i.e., time to death) for cancer patients beyond diagnosis according to a number of covariates. The non-parametric Kaplan-Meier estimator is used to estimate the overall survival function \(S\), without distinguishing according to causes of death.
Authors of the paper show that for some types of cancer (with melanoma and thyroid as examples), survivors actually have a survival comparable to that of the general population. In addition, authors demonstrate that patients having survived long enough to some types of cancer (still with melanoma and thyroid as examples) can access life insurance market at standard insurance rates, contrarily to the common belief within the actuarial community. The technical waiting period appears to be relatively short, and shorter compared to the 10-year period specified in the Belgian law.
All considerations of the paper are based on survival data recorded by the Belgian Cancer Registry and the Belgian population life tables, obtained from the Belgian Statistical Office.


91G05 Actuarial mathematics
62P10 Applications of statistics to biology and medical sciences; meta analysis
Full Text: DOI


[1] Amico, M.; Van Keilegom, I., Cure models in survival analysis, Annu Rev Stat Appl, 5, 311-342 (2018)
[2] Andersson, TM; Dickman, PW; Eloranta, S.; Lambert, PC, Estimating and modelling cure in population-based cancer studies within the framework of flexible parametric survival models, BMC Med Res Methodol, 11, 1, 96 (2011)
[3] Bailar, JC III; Smith, EM, Progress against cancer?, N Engl J Med, 314, 19, 1226-1232 (1986)
[4] Balch, CM; Soong, S-J; Gershenwald, JE; Thompson, JF; Reintgen, DS; Cascinelli, N.; Urist, M.; McMasters, KM; Ross, MI; Kirkwood, JM, Prognostic factors analysis of 17,600 melanoma patients: validation of the american joint committee on cancer melanoma staging system, J Clin Oncol, 19, 16, 3622-3634 (2001)
[5] Belot, A.; Ndiaye, A.; Luque-Fernandez, M-A; Kipourou, D-K; Maringe, C.; Rubio, FJ; Rachet, B., Summarizing and communicating on survival data according to the audience: a tutorial on different measures illustrated with population-based cancer registry data, Clin Epidemiol, 11, 53-65 (2019)
[6] Berkson J, Gage RP (1950) Calculation of survival rates for cancer. In: Proceedings of the staff meetings. Mayo Clinic, vol 25, p 270
[7] Berkson, J.; Gage, RP, Survival curve for cancer patients following treatment, J Am Stat Assoc, 47, 259, 501-515 (1952)
[8] Berrino F, Capocaccia R, Estève J, Gatta G, Hakulinen T, Micheli A, Sant M, Verdecchia A (1999) Survival of cancer patients in europe: the eurocare-2 study. In: Survival of cancer patients in Europe: the EUROCARE-2 study, pp 1-CD
[9] Boag, JW, Maximum likelihood estimates of the proportion of patients cured by cancer therapy, J R Stat Soc Ser B (Methodological), 11, 1, 15-53 (1949) · Zbl 0034.08001
[10] Bolard, P.; Quantin, C.; Esteve, J.; Faivre, J.; Abrahamowicz, M., Modelling time-dependent hazard ratios in relative survival: application to colon cancer, J Clin Epidemiol, 54, 10, 986-996 (2001)
[11] Boussari, O.; Romain, G.; Remontet, L.; Bossard, N.; Mounier, M.; Bouvier, A-M; Binquet, C.; Colonna, M.; Jooste, V., A new approach to estimate time-to-cure from cancer registries data, Cancer Epidemiol, 53, 72-80 (2018)
[12] Buckley, J., Additive and multiplicative models for relative survival rates, Biometrics, 40, 51-62 (1984)
[13] Bureau du suivi de la tarification (2018) Rapport sur l’activité 2017. https://www.bureaudusuivi.be/images/docs/RapportAnnuel_2017.pdf
[14] Chang, AE; Ganz, PA; Hayes, DF; Kinsella, T.; Pass, HI; Schiller, JH; Stone, RM; Strecher, V., Oncology: an evidence-based approach (2007), Berlin: Springer, Berlin
[15] Chauvenet, M.; Lepage, C.; Jooste, V.; Cottet, V.; Faivre, J.; Bouvier, A-M, Prevalence of patients with colorectal cancer requiring follow-up or active treatment, Eur J Cancer, 45, 8, 1460-1465 (2009)
[16] Chen, M-H; Ibrahim, JG; Sinha, D., A new Bayesian model for survival data with a surviving fraction, J Am Stat Assoc, 94, 447, 909-919 (1999) · Zbl 0996.62019
[17] Clements, M.; Liu, X-R, rstpm2: Smooth Survival Models, Including Generalized Survival Models, R package version, 1, 5, 1 (2019)
[18] Clerc-Urmès I, Grzebyk M, Hédelin G, CENSUR working survival group (2020) flexrsurv: An R package for relative survival analysis. R package version 1(4):5
[19] Cleveland, WS; Grosse, E., Computational methods for local regression, Stat Comput, 1, 1, 47-62 (1991)
[20] Cleveland, WS; Devlin, SJ; Grosse, E., Regression by local fitting: methods, properties, and computational algorithms, J Econometr, 37, 1, 87-114 (1988)
[21] Cleveland, W.; Grosse, E.; Shyu, M.; Chambers, JM, A package of c and fortran routines for fitting local regression models, Statistical methods (1992), London: S. Chapman and Hall Ltd., London
[22] Coleman MP, Babb P, Damiecki P, Grosclaude P, Honjo S, Jones J, Knerer G, Pitard A, Quinn M, Sloggett A et al (1999) Cancer survival trends in England and Wales, 1971-1995: deprivation and NHS region. Stationery Office Books
[23] Dal Maso, L.; Guzzinati, S.; Buzzoni, C.; Capocaccia, R.; Serraino, D.; Caldarella, A.; Dei Tos, A.; Falcini, F.; Autelitano, M.; Masanotti, G., Long-term survival, prevalence, and cure of cancer: a population-based estimation for 818 902 italian patients and 26 cancer types, Ann Oncol, 25, 11, 2251-2260 (2014)
[24] Danieli, C.; Remontet, L.; Bossard, N.; Roche, L.; Belot, A., Estimating net survival: the importance of allowing for informative censoring, Stat Med, 31, 8, 775-786 (2012)
[25] Dickman, PW; Sloggett, A.; Hills, M.; Hakulinen, T., Regression models for relative survival, Stat Med, 23, 1, 51-64 (2004)
[26] Dodd, EO; Streftaris, G.; Waters, HR; Stott, AD, The effect of model uncertainty on the pricing of critical illness insurance, Ann Actuar Sci, 9, 1, 108-133 (2015)
[27] Eilers, PH; Marx, BD, Flexible smoothing with b-splines and penalties, Stat Sci, 11, 2, 89-102 (1996) · Zbl 0955.62562
[28] Enstrom, JE; Austin, DF, Interpreting cancer survival rates, Science, 195, 4281, 847-851 (1977)
[29] Esteve, J.; Benhamou, E.; Croasdale, M.; Raymond, L., Relative survival and the estimation of net survival: elements for further discussion, Stat Med, 9, 5, 529-538 (1990)
[30] Esteve, J.; Benhamou, E.; Raymond, L., Statistical methods in cancer research. volume iv. descriptive epidemiology, IARC Sci publ, 128, 1, 302 (1994)
[31] Fauvernier, M.; Remontet, L.; Uhry, Z.; Bossard, N.; Roche, L., survpen: an r package for hazard and excess hazard modelling with multidimensional penalized splines, J Open Sour Softw, 4, 40, 1434 (2019)
[32] Fauvernier M, Roche L, Uhry Z, Tron L, Bossard N, Remontet L, and in the Estimation of Net Survival Working Survival Group C (2019b) Multi-dimensional penalized hazard model with continuous covariates: applications for studying trends and social inequalities in cancer survival. J R Stat Soc Ser C (Applied Statistics)
[33] Geskus, RB, Data analysis with competing risks and intermediate states, (2015), Boca Raton: CRC Press, Boca Raton
[34] Giorgi, R.; Payan, J.; Gouvernet, J., Rsurv: a function to perform relative survival analysis with s-plus or r, Comput Methods Progr Biomed, 78, 2, 175-178 (2005)
[35] Haberman, S.; Renshaw, A., Generalised linear models and excess mortality from peptic ulcers, Insur Math Econ, 9, 1, 21-32 (1990)
[36] Hakulinen, T.; Tenkanen, L., Regression analysis of relative survival rates, J R Stat Soc Ser C (Appl Stat), 36, 3, 309-317 (1987)
[37] Jooste, V.; Grosclaude, P.; Remontet, L.; Launoy, G.; Baldi, I.; Molinié, F.; Arveux, P.; Bossard, N.; Bouvier, A-M; Colonna, M., Unbiased estimates of long-term net survival of solid cancers in france, Int J Cancer, 132, 10, 2370-2377 (2013)
[38] Kaplan, EL; Meier, P., Nonparametric estimation from incomplete observations, J Am Stat Assoc, 53, 282, 457-481 (1958) · Zbl 0089.14801
[39] Lambert, PC; Thompson, JR; Weston, CL; Dickman, PW, Estimating and modeling the cure fraction in population-based cancer survival analysis, Biostatistics, 8, 3, 576-594 (2006) · Zbl 1121.62096
[40] Latouche, A.; Allignol, A.; Beyersmann, J.; Labopin, M.; Fine, JP, A competing risks analysis should report results on all cause-specific hazards and cumulative incidence functions, J Clin Epidemiol, 66, 6, 648-653 (2013)
[41] Legrand, C.; Bertrand, A., Cure models in oncology clinical trials, Textb Clin Trials Oncol Stat Perspect, 1, 465-492 (2019)
[42] Lemaire, J.; Subramanian, K.; Armstrong, K.; Asch, DA, Pricing term insurance in the presence of a family history of breast or ovarian cancer, N Am Actuar J, 4, 2, 75-87 (2000) · Zbl 1083.62536
[43] Lenner, P., The excess mortality rate: a useful concept in cancer epidemiology, Acta Oncol, 29, 5, 573-576 (1990)
[44] Maller, RA; Zhou, X., Survival analysis with long-term survivors (1996), Oxford: Wiley, Oxford · Zbl 1151.62350
[45] Massart, M., A long-term survivor’s perspective on supportive policy for a better access to insurance, loan and mortgage, J Cancer Policy, 15, 70-71 (2018)
[46] Mounier M (2015) Apport des méthodes de survie nette dans le pronostic des lymphomes malins non hodgkiniens en population générale. PhD thesis, Université Claude Bernard-Lyon I
[47] Oksanen H (1998) Modelling the survival of prostate cancer patients. University of Tampere
[48] Othus, M.; Barlogie, B.; LeBlanc, ML; Crowley, JJ, Cure models as a useful statistical tool for analyzing survival, Clin Cancer Res, 18, 14, 3731-3736 (2012)
[49] Pavlič, K.; Pohar Perme, M., Using pseudo-observations for estimation in relative survival, Biostatistics, 20, 3, 384-399 (2019)
[50] Percy, C.; Stanek, E. 3rd; Gloeckler, L., Accuracy of cancer death certificates and its effect on cancer mortality statistics, Am J Public Health, 71, 3, 242-250 (1981)
[51] Perme, MP; Pavlič, K., Nonparametric relative survival analysis with the R package relsurv, J Stat Softw, 87, 8, 1-27 (2018)
[52] Perme, MP; Stare, J.; Estève, J., On estimation in relative survival, Biometrics, 68, 1, 113-120 (2012) · Zbl 1241.62163
[53] Perme, MP; Estève, J.; Rachet, B., Analysing population-based cancer survival-settling the controversies, BMC Cancer, 16, 1, 1-8 (2016)
[54] Pohar, M.; Stare, J., Relative survival analysis in r, Comput Methods Programs Biomed, 81, 3, 272-278 (2006)
[55] Quantin, C.; Abrahamowicz, M.; Moreau, T.; Bartlett, G.; MacKenzie, T.; Adnane Tazi, M.; Lalonde, L.; Faivre, J., Variation over time of the effects of prognostic factors in a population-based study of colon cancer: comparison of statistical models, Am J Epidemiol, 150, 11, 1188-1200 (1999)
[56] R Core Team (2017) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria
[57] Remontet L, Uhry Z, Bossard N, Iwaz J, Belot A, Danieli C, Charvat H, Roche L, Group C. W S., Flexible and structured survival model for a simultaneous estimation of non-linear and non-proportional effects and complex interactions between continuous variables: Performance of this multidimensional penalized spline approach in net survival trend analysis, Stat Methods Med Res, 28, 8, 2368-2384 (2019)
[58] Renshaw, AE, Modelling excess mortality using glim, J Inst Actuar, 115, 2, 299-315 (1988)
[59] Ries L, Eisner M, Kosary C, Hankey B, Miller B, Clegg L, Edwards B (2002) Seer cancer statistics review, 1973-1999. bethesda, md: National cancer institute. https://seer.cancer.gov/csr/1973-1999
[60] Schaffar, R.; Rachet, B.; Belot, A.; Woods, LM, Estimation of net survival for cancer patients: relative survival setting more robust to some assumption violations than cause-specific setting, a sensitivity analysis on empirical data, Eur J Cancer, 72, 78-83 (2017)
[61] Schvartsman, G.; Taranto, P.; Glitza, IC; Agarwala, SS; Atkins, MB; Buzaid, AC, Management of metastatic cutaneous melanoma: updates in clinical practice, Ther Adv Med Oncol, 11, 1758835919851663 (2019)
[62] Shang K (2019) Individual Cancer Mortality Prediction. Fundaciòn Mapfre
[63] Silversmit, G.; Jegou, D.; Vaes, E.; Van Hoof, E.; Goetghebeur, E.; Van Eycken, L., Cure of cancer for seven cancer sites in the Flemish region, Int J Cancer, 140, 5, 1102-1110 (2017)
[64] The Belgian Cancer Registry (2012) Cancer survival in belgium. https://kankerregister.org/media/docs/publications/CancerSurvivalinBelgium.PDF
[65] Tsodikov, A.; Ibrahim, J.; Yakovlev, A., Estimating cure rates from survival data: an alternative to two-component mixture models, J Am Stat Assoc, 98, 464, 1063-1078 (2003)
[66] Tsodikov, AD; Yakovlev, AY; Asselain, B., Stochastic models of tumor latency and their biostatistical applications (1996), Singapore: World Scientific, Singapore · Zbl 0919.92024
[67] Yue, JC; Wang, H-C; Leong, Y-Y; Su, W-P, Using Taiwan national health insurance database to model cancer incidence and mortality rates, Insur Math Econ, 78, 316-324 (2018) · Zbl 1400.91256
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.