Manchon, Dominique Symbolic calculus on nilpotent Lie groups and applications. (Calcul symbolique sur les groupes de Lie nilpotents et applications.) (French) Zbl 0745.22006 J. Funct. Anal. 102, No. 1, 206-251 (1991). Let \(\pi\) be an irreducible unitary representation of a real connected simply connected nilpotent Lie group \(G\). Let \(X_ 1,\dots,X_ n\) be a base for the Lie algebra \({\mathfrak g}\) of \(G\). For a function \(p\) on \(\mathbb{R}^ n\) such that \({\mathfrak f}^{-1}p\) is \(C^{\infty}\) with compact support put \[ p^ L(A)=\int_{\mathbb{R}^ n}({\mathfrak f}^{-1}p)(x_ 1\cdots x_ n)\pi(\exp a_ nx_ n\cdots\exp a_ 1x_ 1)dx_ 1\dots dx_ n \] acting on \(D\) the dense subset of \(C^{\infty}\) vectors of \({\mathfrak H}\pi\). The author shows that \(p^ L(A)\) can be viewed as a classical pseudo differential operator and obtains a relation between \(p\) and the symbol of \(p^ L(A)\). He shows further that \(p^ L(A)\) is a smoothing operator if \(p\) vanishes on the orbit associated with \(\pi\). Reviewer: S.Sankaran (London) Cited in 9 Documents MSC: 22E27 Representations of nilpotent and solvable Lie groups (special orbital integrals, non-type I representations, etc.) 47B38 Linear operators on function spaces (general) Keywords:irreducible unitary representation; simple connected nilpotent Lie group; Lie algebra; compact support; pseudo differential operator; smoothing operator; orbit × Cite Format Result Cite Review PDF Full Text: DOI References: [1] Anderson, R. F.V, The Weyl functional calculus, J. Funct. Anal., 4, 240-267 (1969) · Zbl 0191.13403 [2] Anderson, R. F.V, On the Weyl functional calculus, J. Funct. Anal., 6, 110-115 (1970) · Zbl 0196.14302 [3] Arnal, D., \(^∗\)-Products and representations of nilpotent groups, Pacific J. Math., 114, No. 2, 285-307 (1984) · Zbl 0561.58022 [4] Arnal, D.; Cortet, J. C., Nilpotent Fourier transform and applications, Lett. Math. Phys., 9, 25-34 (1985) · Zbl 0616.46041 [6] Bernat, P.; Conze, N.; Duflo, M., Représentation des groupes de Lie résolubles, monographie de la SMF, No. 4 (1972) · Zbl 0248.22012 [7] Bochnak, J.; Coste, M.; Roy, M. F., Géométrie Algébrique Réelle (1987), Springer-Verlag: Springer-Verlag New York/Berlin · Zbl 0633.14016 [8] Benoist, Y., Analyse harmonique sur les espaces symétriques nilpotents, J. Funct. Anal., 59, 211-253 (1984) · Zbl 0555.43012 [9] Charbonnel, J.-Y, Une application des systèmes différentiels aux caractères, (Représentations des groupes et analyse complexe. Représentations des groupes et analyse complexe, Journées SMF CIRM Luminy, Université de Poitiers, No. 24 (Sept. 1-5, 1986)) · Zbl 0643.43002 [11] Helffer, B.; Robert, D., Propriétés asymptotiques du spectre d’opérateurs pseudodifférentiels sur \(R^n\), Comm. Partial Differential Equations, 7, No. 7, 795-882 (1982) · Zbl 0501.35081 [12] Helffer, B.; Robert, D., Étude du spectre pour un opérateur globalement elliptique dont le symbole de Weyl présente des symétries. II. Action des groupes de Lie compacts, Amer. J. Math., 108, 973-1000 (1986) · Zbl 0605.58042 [13] Howe, R., On a connection between nilpotent groups and oscillatory integrals associated to singularities, Pacific J. Math., 73, No. 2, 329-363 (1977) · Zbl 0383.22009 [15] Howe, R., The role of the Heisenberg group in harmonic analysis, Bull. Amer. Math. Soc., 3, No. 2, 821-843 (1980) · Zbl 0442.43002 [16] Howe, R.; Ratcliff, G.; Wildberger, N., Symbol mappings for certain nilpotent groups, (Proceedings Univ. of Maryland. Proceedings Univ. of Maryland, Lecture Notes, 1077 (1982-1983)), 288-320 · Zbl 0559.35010 [17] Karasev, M. V.; Maslov, V. P., Algebras with general commutation relations and their applications, II, J. Soviet Math. (1981) · Zbl 0482.58029 [18] Kirillov, A. A., Unitary representations of nilpotent Lie Groups, Russian Math. Surveys, 53-104 (1962) · Zbl 0106.25001 [19] Kohn, J. J.; Nirenberg, L., An algebra of pseudo-differential operators, Comm. Pure Appl. Math., 18, 269-305 (1965) · Zbl 0171.35101 [20] Lion, G., Expression explicite d’opérateurs d’entrelacement pour des représentations unitaires irréductibles de groupes de Lie réels nilpotents simplement connexes, Thèse de troisième cycle, Université Paris VII (1976) [21] Ludwig, J., Good ideals in the group algebra of a nilpotent Lie group, Math. Z., 161, 195-210 (1978) · Zbl 0365.22007 [22] Manchon, D., Formule de Weyl pour les groupes de Lie nilpotents, Thèse de doctorat, Université Paris VII (September 29, 1989) [23] Manchon, D., Formule de Weyl pour les groupes de Lie nilpotents, J. Reine Angew. Math., 418, 77-129 (1991) · Zbl 0721.22004 [24] Mohamed, A., Comportement asymptotique des valeurs propres d’une classe d’opérateurs pseudo-différentiels sur \(R^n\), (Etude spectrale des opérateurs pseudo-différentiels hypoelliptiques. Etude spectrale des opérateurs pseudo-différentiels hypoelliptiques, Thèse (1983), Université de Nantes) · Zbl 0689.35067 [25] Nelson, E., Analytic vectors, Ann. of Math., 70, No. 3, 572-615 (1959) · Zbl 0091.10704 [26] Nilsson, N., Asymptotic estimates for spectral functions connected with hypoelliptic differential operators, Ark. Math., 5, No. 35, 527-540 (1965) · Zbl 0144.36302 [27] Wildberger, N. J., Abstract Quantization and Harmonic Analysis on Nilpotent Lie Groups, (Thèse (1983), Yale University) · Zbl 0684.22005 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.