Ryzhov, Yu. M. Stochastic equations for stationary Gaussian processes. (English. Russian original) Zbl 0745.60062 Theory Probab. Math. Stat. 42, 153-159 (1991); translation from Teor. Veroyatn. Mat. Stat., Kiev 42, 128-134 (1990). Let \(\gamma\) be a measure on \([0,\infty)\), \(\sigma\geq 0\), and \(\omega(\cdot)\) a Brownian motion process. The author gives conditions for the existence and uniqueness of a stationary solution to the equation \[ \xi(t)=\xi(0)+\int^ t_ 0 \int^ \infty_ 0 \xi(s- u)\gamma(du)+\sigma\omega(t). \] Reviewer: A.Dale (Durban) MSC: 60H10 Stochastic ordinary differential equations (aspects of stochastic analysis) 60G15 Gaussian processes 60J65 Brownian motion 60G57 Random measures 60G30 Continuity and singularity of induced measures Keywords:stochastic equation; Gaussian process; Brownian motion; stationary solution PDFBibTeX XMLCite \textit{Yu. M. Ryzhov}, Theory Probab. Math. Stat. 42, 153--159 (1990; Zbl 0745.60062); translation from Teor. Veroyatn. Mat. Stat., Kiev 42, 128--134 (1990)