zbMATH — the first resource for mathematics

Special structures of mixed linear models with nuisance parameters. (English) Zbl 0745.62071
L’auteur considère le modèle linéaire à effets mixtes où certains paramètres sont vus comme paramètres de nuisance. Il s’intéresse plus particulièrement aux modèles pour lesquels on peut trouver une transformation des données préservant l’information nécessaire à l’estimation des paramètres intéressants.

62J10 Analysis of variance and covariance (ANOVA)
62H12 Estimation in multivariate analysis
Full Text: EuDML
[1] KLEFFE J.: C R. Rao’s MINQUE for replicated and multivariate observations. Lecture Notes in Statistics 2. Mathematical Statistics and Probability Theory. Proc. Sixth International Conference. Wisla (Poland) 1978. Springer, N. York, Heidelberg, Berlin 1979, p. 188-200.
[2] KLEFFE J., VOLAUFOVÁ J.: Optimality of the sample variance-covariance matrix in replicated measurement design. Sankhya 47, 90, 1985, 90-99. · Zbl 0575.62052
[3] KUBÁČEK L.: Elimination of nuisance parameters in a regression model. Math. Slovaca 36, 1986, 137-144. · Zbl 0605.62081
[4] KUBÁČEK L.: Foundations of Estimation Theory. Elsevier, Amsterdam-Oxford-N. York -Tokyo 1988. · Zbl 0698.62004
[5] KUBÁČEK L.: Optimal elimination of nuisance parameters in mixed linear models. · Zbl 0760.62067
[6] RAO C. R.: Least squares theory using an estimated dispersion matrix and its application to measurements in signal. Proc. 5th Berkeley Symposium on Mathematical Statistics and Probability. Vol. 1. Theory of Statistics. University of California Press, Berkeley-Los Angeles, 1967, p. 355-372.
[7] RAO C. R., MITRA S. K.: Generalized Inverse of Matrices and Its Applications. J. Wiley, N. York 1971. · Zbl 0236.15005
[8] RAO C. R., KLEFFE J.: Estimation of variance components. P. R. Krishnaiah (Ed.), Handbook of Statistics. Vol. I. North-Holland, Amsterdam-N. York 1980, 1-40. · Zbl 0476.62058
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.