Global least squares path modeling: a full-information alternative to partial least squares path modeling. (English) Zbl 1477.62341

Summary: Partial least squares path modeling has been widely used for component-based structural equation modeling, where constructs are represented by weighted composites or components of observed variables. This approach remains a limited-information method that carries out two separate stages sequentially to estimate parameters (component weights, loadings, and path coefficients), indicating that it has no single optimization criterion for estimating the parameters at once. In general, limited-information methods are known to provide less efficient parameter estimates than full-information ones. To address this enduring issue, we propose a full-information method for partial least squares path modeling, termed global least squares path modeling, where a single least squares criterion is consistently minimized via a simple iterative algorithm to estimate all the parameters simultaneously. We evaluate the relative performance of the proposed method through the analyses of simulated and real data. We also show that from algorithmic perspectives, the proposed method can be seen as a block-wise special case of another full-information method for component-based structural equation modeling – generalized structured component analysis.


62P15 Applications of statistics to psychology
62H25 Factor analysis and principal components; correspondence analysis
62H20 Measures of association (correlation, canonical correlation, etc.)
Full Text: DOI


[1] Addinsoft, S. (2009). XLSTAT 2009. Addinsoft. Paris, France: Addinsoft.
[2] Anderson, EW; Fornell, C., Foundations of the American customer satisfaction index, Total Quality Management, 11, 7, 869-882 (2000)
[3] Anderson, EW; Fornell, C.; Lehmann, DR, Customer satisfaction, market share, and profitability: Findings from Sweden, Journal of Marketing, 58, 3, 53-66 (1994)
[4] Bollen, KA; Kirby, JB; Curran, PJ; Paxton, PM; Chen, F., Latent variable models under misspecification two-stage least squares (2SLS) and maximum likelihood (ML) estimators, Sociological Methods and Research, 36, 1, 48-86 (2007)
[5] Boyd, S.; Boyd, SP; Vandenberghe, L., Convex optimization (2004), Cambridge, England: Cambridge University Press, Cambridge, England · Zbl 1058.90049
[6] Chin, WW; Marcoulides, GA, The partial least squares approach for structural equation modeling, Modern methods for business research, 295-336 (1998), Mahwah, NJ, US: Erlbaum, Mahwah, NJ, US
[7] Chin, W. W. (2001). PLS-Graph User’s Guide Version 3.0. Soft Modeling Inc.
[8] Cho, G.; Choi, JY, An empirical comparison of generalized structured component analysis and partial least squares path modeling under variance-based structural equation models, Behaviormetrika, 47, 1, 243-272 (2020)
[9] Cho, G.; Jung, K.; Hwang, H., Out-of-bag prediction error?: A cross validation index for generalized structured component analysis, Multivariate Behavioral Research (2019)
[10] Cho, G., Sarstedt, M., & Hwang, H. (2020). A comparative evaluation of factor- and component-based structural equation modeling methods under (in)consistent model specifications. Manuscript Submitted for Publication.
[11] Coolen, H., & de Leeuw, J. (1987). Least squares path analysis with optimal scaling. Paper presented at the fifth international symposium of data analysis and informatics.
[12] de Leeuw, J.; Young, FW; Takane, Y., Additive structure in qualitative data: An alternating least squares method with optimal scaling features, Psychometrika, 41, 4, 471-503 (1976) · Zbl 0351.92031
[13] Dijkstra, T. K. (2010). Latent variables and indices: Herman Wold’s basic design and partial least squares. In V. Esposito Vinzi, W. W. Chin, J. Henseler, & H. Wang (Eds.), Handbook of Partial Least Squares: Concepts, Methods and Applications (pp. 23-46). Berlin, Heidelberg: Springer. doi:10.1007/978-3-540-32827-8_2
[14] Dijkstra, T. K. (2017). A perfect match between a model and a mode. In Partial least squares path modeling: Basic concepts, methodological issues and applications (pp. 55-80). Berlin, Germany: Springer-Verlag. doi:10.1007/978-3-319-64069-3_4
[15] Dijkstra, TK; Henseler, J., Consistent partial least squares path modeling, MIS Quarterly, 39, 2, 297-316 (2015)
[16] Efron, B., Bootstrap methods: Another look at the jackknife, The Annals of Statistics, 7, 1, 1-26 (1979) · Zbl 0406.62024
[17] Fomby, T. B., Johnson, S. R., & Hill, R. C. (2012). Advanced econometric methods. Advanced Econometric Methods. Berlin, Germany: Springer. doi:10.1007/978-1-4419-8746-4. · Zbl 0668.62075
[18] Fornell, C., A national customer satisfaction barometer: The Swedish experience, Journal of Marketing, 56, 1, 6-21 (1992)
[19] Fornell, C.; Johnson, MD; Anderson, EW; Cha, J.; Bryant, BE, The American customer satisfaction index: Nature, purpose, and findings, Journal of Marketing, 60, 4, 7 (1996)
[20] Gifi, A. (1990). Nonlinear multivariate analysis. Retrieved from: Wiley. https://www.wiley.com/en-us/Nonlinear+Multivariate+Analysis-p-9780471926207. · Zbl 0697.62048
[21] Hair, JF; Hult, GTM; Ringle, CM; Sarstedt, M.; Thiele, KO, Mirror, mirror on the wall: a comparative evaluation of composite-based structural equation modeling methods, Journal of the Academy of Marketing Science, 45, 5, 616-632 (2017)
[22] Hanafi, M., PLS path modelling: Computation of latent variables with the estimation mode B, Computational Statistics, 22, 2, 275-292 (2007) · Zbl 1196.62103
[23] Hwang, H., Cho, G., Jung, K., Falk, C., Flake, J., Jin, M. J., & Lee, S. H. (in press). An approach to structural equation modeling with both factors and components: Integrated generalized structured component analysis. Psychological Methods.
[24] Hwang, H.; Takane, Y., Generalized structured component analysis, Psychometrika, 69, 1, 81-99 (2004) · Zbl 1306.62437
[25] Hwang, H.; Takane, Y., Generalized structured component analysis: A component-based approach to structural equation modeling (2014), New York, NY: Chapman and Hall/CRC Press, New York, NY
[26] Hwang, H.; Takane, Y.; Jung, K., Generalized structured component analysis with uniqueness terms for accommodating measurement error, Frontiers in Psychology, 8, 2137 (2017)
[27] Hwang, H.; Takane, Y.; Tenenhaus, A., An alterantive estimation procedure for partial least squares path modeling, Behaviormetrika, 42, 1, 63-78 (2015)
[28] Johnson, MD; Gustafsson, A.; Andreassen, TW; Lervik, L.; Cha, J., The evolution and future of national customer satisfaction index models, Journal of Economic Psychology, 22, 2, 217-245 (2001)
[29] Jöreskog, KG, Estimation and testing of simplex models, British Journal of Mathematical and Statistical Psychology, 23, 2, 121-145 (1970) · Zbl 0205.49403
[30] Jöreskog, KG, Structural analysis of covariance and correlation matrices, Psychometrika, 43, 4, 443-477 (1978) · Zbl 0392.62043
[31] Jöreskog, KG; Wold, H.; Wold, H.; Jöreskog, KG, The ML and PLS techniques for modeling with latent variables: Historical and comparative aspects, Systems under indirect observation: Causality, structure, prediction, part I, 263-270 (1982), Amsterdam, Netherlands: North Holland, Amsterdam, Netherlands · Zbl 0503.62067
[32] Karatzoglou, A.; Smola, A.; Hornik, K.; Zeileis, A., kernlab - An S4 package for kernel methods in R, Journal of Statistical Software, 11, 9, 1-20 (2004)
[33] Krämer, N. (2007). Analysis of high dimensional data with partial least squares and boosting. Technische Universität Berlin, Fakultät IV - Elektrotechnik und Informatik: Technische Universität Berlin, Berlin. doi:10.14279/depositonce-1539.
[34] Lohmöller, J. B. (1984). LVPLS Program Manual-Version 1.6. Zentralarchiv fur Empirische Sozialforschung. Koln: Universitat zu Koln.
[35] Lohmö ller, J. B. (1989). Latent variable path modeling with partial least squares. New York, NY: Springer-Verlag. doi:10.1007/978-3-642-52512-4.
[36] McDonald, RP, Path analysis with composite variables, Multivariate Behavioral Research, 31, 2, 239-270 (1996)
[37] Noonan, R.; Wold, H.; Jöreskog, KG; Wold, H., PLS path modeling with indirectly observed variables: A comparison of alternative estimates for the latent variable, Systems under indirect observation: Causality, structure, prediction, part II, 75-94 (1982), Amsterdam, Netherlands: North Holland, Amsterdam, Netherlands
[38] Rigdon, EE, Rethinking partial least squares path modeling: In praise of simple methods, Long Range Planning, 45, 5-6, 341-358 (2012)
[39] Rigdon, EE; Sarstedt, M.; Ringle, CM, On comparing results from CB-SEM and PLS-SEM: Five perspectives and five recommendations, Marketing ZFP, 39, 3, 4-16 (2017)
[40] Ringle, C. M., Wende, S., & Will, A. (2005). SmartPLS 2.0 (beta). Hamburg, Germany: SmartPLS. Retrieved from http://www.smartpls.com
[41] Rönkkö, M.; McIntosh, CN; Antonakis, J.; Edwards, JR, Partial least squares path modeling: Time for some serious second thoughts, Journal of Operations Management, 47-48, 9-27 (2016)
[42] Sarstedt, M.; Hair, JF; Ringle, CM; Thiele, KO; Gudergan, SP, Estimation issues with PLS and CBSEM: Where the bias lies!, Journal of Business Research, 69, 10, 3998-4010 (2016)
[43] ten Berge, JMF, Least squares optimization in multivariate analysis (1993), Leiden, Netherlands: DSWO Press, Leiden, Netherlands
[44] Tenenhaus, A.; Guillemot, V., RGCCA: Regularized and sparse generalized canonical correlation analysis for multiblock data, R Package Version, 2, 1, 2 (2017)
[45] Tenenhaus, A.; Tenenhaus, M., Regularized generalized canonical correlation analysis, Psychometrika, 76, 2, 257 (2011) · Zbl 1284.62753
[46] Tenenhaus, M., Component-based structural equation modelling, Total Quality Management and Business Excellence, 19, 7-8, 871-886 (2008)
[47] Tenenhaus, M.; Tenenhaus, A.; Groenen, PJF, Regularized generalized canonical correlation analysis: A framework for sequential multiblock component methods, Psychometrika, 82, 3, 737-777 (2017) · Zbl 1402.62121
[48] Vinzi, V. E., Trinchera, L., & Amato, S. (2010). PLS path modeling: From foundations to recent developments and open issues for model assessment and improvement. In V. Esposito Vinzi, W. W. Chin, J. Henseler, & H. Wang (Eds.), Handbook of Partial Least Squares: Concepts, Methods and Applications (pp. 47-82). Berlin, Heidelberg: Springer. doi:10.1007/978-3-540-32827-8_3
[49] Wold, H.; Krishnajah, PR, Estimation of principal components and related models by iterative least squares, Multivariate analysis, 391-420 (1966), NewYork, NY: Academic Press, NewYork, NY
[50] Wold, H.; Krishnaiah, PR, Nonlinear iterative partial least squares (NIPALS) Modelling: Some current developments, Multivariate analysis-III, 383-407 (1973), New York, NY: Academic Press, New York, NY
[51] Wold, H.; Jöreskog, KG; Wold, H., Soft modeling: The basic design and some extensions, Systems under indirect observation: Causality, structure, prediction, part II, 1-54 (1982), Amsterdam, Netherlands: North Holland, Amsterdam, Netherlands
[52] Wold, H.; Kotz, S.; Johnson, NL, Partial least squares, Encyclopedia of Statistical Sciences, 581-591 (1985), New York, NY: Wiley, New York, NY
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.