COLA with scale-dependent growth: applications to screened modified gravity models. (English) Zbl 07455793


83-XX Relativity and gravitational theory


Full Text: DOI arXiv


[1] C.M. Will, 2014 The Confrontation between General Relativity and Experiment, Living Rev. Rel.17 4 [1403.7377] · Zbl 1316.83019
[2] Euclid collaboration, R. Scaramella et al., 2015 Euclid space mission: a cosmological challenge for the next 15 years, IAU Symp.306 375 [1501.04908]
[3] LSST collaboration, Z. Ivezic, J.A. Tyson, R. Allsman, J. Andrew and R. Angel, LSST: from Science Drivers to Reference Design and Anticipated Data Products, [0805.2366]
[4] D. Spergel et al., Wide-Field InfraRed Survey Telescope-Astrophysics Focused Telescope Assets WFIRST-AFTA Final Report, [1305.5422]
[5] DESI collaboration, A. Aghamousa et al., The DESI Experiment Part I: Science,Targeting and Survey Design, [1611.00036]
[6] K.S. Dawson et al., 2016 The SDSS-IV extended Baryon Oscillation Spectroscopic Survey: Overview and Early Data, Astron. J.151 44 [1508.04473]
[7] L.E.H. Godfrey et al., 2012 Science at very high angular resolution with the square kilometre array, Publ. Astron. Soc. Aust.29 42
[8] K. Koyama, 2016 Cosmological tests of modified gravity, Rept. Prog. Phys.79 046902 [1504.04623]
[9] E. Berti et al., 2015 Testing general relativity with present and future astrophysical observations, Class. Quant. Grav.32 243001 [1501.07274]
[10] B. Li, 2012 Testing gravity on cosmological scales, Astron. Geophys.53 4.37
[11] T. Clifton, P.G. Ferreira, A. Padilla and C. Skordis, 2012 Modified gravity and cosmology, Phys. Rept.513 1 [1106.2476]
[12] H. Oyaizu, 2008 Non-linear evolution of f(R) cosmologies I: methodology, Phys. Rev. D 78 123523 [0807.2449]
[13] K.C. Chan and R. Scoccimarro, 2009 Large-scale structure in brane-induced gravity II. Numerical simulations, Phys. Rev. D 80 104005 [0906.4548]
[14] F. Schmidt, 2009 Self-consistent cosmological simulations of DGP braneworld gravity, Phys. Rev. D 80 043001 [0905.0858]
[15] J. Khoury and M. Wyman, 2009 N-body simulations of DGP and degravitation theories, Phys. Rev. D 80 064023 [0903.1292]
[16] B. Li and J.D. Barrow, 2011 N-body simulations for coupled scalar field cosmology, Phys. Rev. D 83 024007 [1005.4231]
[17] G.-B. Zhao, B. Li and K. Koyama, 2011 N-body simulations for f(R) gravity using a Self-adaptive particle-mesh code, Phys. Rev. D 83 044007 [1011.1257]
[18] B. Li, G.-B. Zhao, R. Teyssier and K. Koyama, 2012 ECOSMOG: an efficient code for simulating modified gravity J. Cosmol. Astropart. Phys.2012 01 051 [1110.1379]
[19] E. Puchwein, M. Baldi and V. Springel, 2013 Modified Gravity-GADGET: a new code for cosmological hydrodynamical simulations of modified gravity models, Mon. Not. Roy. Astron. Soc.436 348 [1305.2418]
[20] C. Llinares, D.F. Mota and H.A. Winther, 2014 ISIS: a new N-body cosmological code with scalar fields based on RAMSES. Code presentation and application to the shapes of clusters, Astron. Astrophys.562 A78 [1307.6748]
[21] H.A. Winther et al., 2015 Modified gravity N-body code comparison project, Mon. Not. Roy. Astron. Soc.454 4208 [1506.06384]
[22] S. Bose et al., 2017 Speeding up N-body simulations of modified gravity: Chameleon screening models J. Cosmol. Astropart. Phys.2017 02 050 [1611.09375]
[23] A. Barreira, S. Bose and B. Li, 2015 Speeding up N-body simulations of modified gravity: Vainshtein screening models J. Cosmol. Astropart. Phys.2015 12 059 [1511.08200]
[24] H.A. Winther and P.G. Ferreira, 2015 Fast route to nonlinear clustering statistics in modified gravity theories, Phys. Rev. D 91 123507 [1403.6492]
[25] P. Monaco, T. Theuns and G. Taffoni, 2002 The pinocchio algorithm: pinpointing orbit-crossing collapsed hierarchical objects in a linear density field, Mon. not. Roy. Astron. Soc.331 587 [astro-ph/0109323]
[26] L.A. Rizzo et al., 2017 Simulating cosmologies beyond ΛCDM with PINOCCHIO J. Cosmol. Astropart. Phys.2017 01 008 [1610.07624]
[27] J.R. Bond and S.T. Myers, 1996 The Peak-Patch Picture of Cosmic Catalogs. 1. Algorithms, Astrophys. J. Suppl.103 1
[28] R. Scoccimarro and R.K. Sheth, 2002 PTHALOS: a fast method for generating mock galaxy distributions 329 629 [astro-ph/0106120]
[29] M. Manera et al., 2012 The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: a large sample of mock galaxy catalogues, Mon. Not. Roy. Astron. Soc.428 1036 [1203.6609]
[30] M. Manera et al., 2015 The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: mock galaxy catalogues for the low-redshift sample, Mon. Not. Roy. Astron. Soc.447 437 [1401.4171]
[31] M. White, J.L. Tinker and C.K. McBride, 2014 Mock galaxy catalogues using the quick particle mesh method, Mon. Not. Roy. Astron. Soc.437 2594 [1309.5532]
[32] F.-S. Kitaura, G. Yepes and F. Prada, 2014 Modelling baryon acoustic oscillations with perturbation theory and stochastic halo biasing, Mon. Not. Roy. Astron. Soc.439 21 [1307.3285]
[33] S. Avila, S.G. Murray, A. Knebe, C. Power, A.S.G. Robotham and J. García-Bellido, 2015 HALOGEN: A tool for fast generation of mock halo catalogues, Mon. Not. Roy. Astron. Soc.450 1856 [1412.5228]
[34] S. Tassev, M. Zaldarriaga and D. Eisenstein, 2013 Solving large scale structure in ten easy steps with COLA J. Cosmol. Astropart. Phys.2013 06 036 [1301.0322]
[35] G. Valogiannis and R. Bean, 2017 Efficient simulations of large scale structure in modified gravity cosmologies with comoving Lagrangian acceleration, Phys. Rev. D 95 103515 [1612.06469]
[36] S. Tassev, D.J. Eisenstein, B.D. Wandelt and M. Zaldarriaga, sCOLA: The N-body COLA Method Extended to the Spatial Domain, [1502.07751]
[37] J. Koda, C. Blake, F. Beutler, E. Kazin and F. Marin, 2016 Fast and accurate mock catalogue generation for low-mass galaxies, Mon. Not. Roy. Astron. Soc.459 2118 [1507.05329]
[38] F. Leclercq, J. Jasche and B. Wandelt, 2015 Bayesian analysis of the dynamic cosmic web in the SDSS galaxy survey J. Cosmol. Astropart. Phys.2015 06 015 [1502.02690]
[39] A. Izard, M. Crocce and P. Fosalba, 2016 ICE-COLA: towards fast and accurate synthetic galaxy catalogues optimizing a quasi N-body method, Mon. Not. Roy. Astron. Soc.459 2327 [1509.04685]
[40] E. Munari, P. Monaco, J. Koda, F.-S. Kitaura, E. Sefusatti and S. Borgani, Testing approximate predictions of displacements of cosmological dark matter halos, [1704.00920]
[41] C.-H. Chuang et al., 2015 nIFTy Cosmology: Galaxy/halo mock catalogue comparison project on clustering statistics, Mon. Not. Roy. Astron. Soc.452 686 [1412.7729]
[42] C. Howlett, M. Manera and W.J. Percival, 2015 L-PICOLA: A parallel code for fast dark matter simulation, Astron. Comput.12 109 [1506.03737]
[43] J. Khoury and A. Weltman, 2004 Chameleon cosmology, Phys. Rev. D 69 044026 [astro-ph/0309411]
[44] D.F. Mota and D.J. Shaw, 2007 Evading equivalence principle violations, cosmological and other experimental constraints in scalar field theories with a strong coupling to matter, Phys. Rev. D 75 063501 [hep-ph/0608078]
[45] K. Hinterbichler and J. Khoury, 2010 Symmetron Fields: Screening Long-Range Forces Through Local Symmetry Restoration, Phys. Rev. Lett.104 231301 [1001.4525]
[46] K.A. Olive and M. Pospelov, 2008 Environmental dependence of masses and coupling constants, Phys. Rev. D 77 043524 [0709.3825]
[47] M. Pietroni, 2005 Dark energy condensation, Phys. Rev. D 72 043535 [astro-ph/0505615]
[48] E. Babichev, C. Deffayet and R. Ziour, 2009 k-Mouflage gravity, Int. J. Mod. Phys. D 18 2147 [0905.2943] · Zbl 1183.83081
[49] A.I. Vainshtein, 1972 To the problem of nonvanishing gravitation mass, Phys. Lett.39B 393
[50] P. Brax, A.-C. Davis, B. Li and H.A. Winther, 2012 Unified description of screened modified gravity, Phys. Rev. D 86 044015 [1203.4812]
[51] P. Brax, A.-C. Davis and B. Li, 2012 Modified gravity tomography, Phys. Lett. B 715 38 [1111.6613]
[52] F.R. Bouchet, Introductory overview of Eulerian and Lagrangian perturbation theories, [astro-ph/9603013]
[53] B. Bose and K. Koyama, 2016 A perturbative approach to the redshift space power spectrum: beyond the standard model J. Cosmol. Astropart. Phys.2016 08 032 [1606.02520]
[54] A. Aviles and J.L. Cervantes-Cota, A Lagrangian perturbation theory for modify gravity, [1705.10719]
[55] A. De Felice and S. Tsujikawa, 2010 f(R) theories, Living Rev. Rel.13 3 [1002.4928] · Zbl 1215.83005
[56] W. Hu and I. Sawicki, 2007 Models of f(R) cosmic acceleration that evade solar-system tests, Phys. Rev. D 76 064004 [0705.1158]
[57] J. Khoury, Theories of Dark Energy with Screening Mechanisms, [1011.5909]
[58] H. Oyaizu, M. Lima and W. Hu, 2008 Nonlinear evolution of f(R) cosmologies. 2. Power spectrum, Phys. Rev. D 78 123524 [0807.2462]
[59] F. Schmidt, M.V. Lima, H. Oyaizu and W. Hu, 2009 Non-linear evolution of f(R) cosmologies III: Halo statistics, Phys. Rev. D 79 083518 [0812.0545]
[60] G.R. Dvali, G. Gabadadze and M. Porrati, 2000 4-D gravity on a brane in 5-D Minkowski space, Phys. Lett. B 485 208 [hep-th/0005016] · Zbl 0961.83045
[61] R. Maartens and K. Koyama, 2010 Brane-World Gravity, Living Rev. Rel.13 5 [1004.3962] · Zbl 1316.83038
[62] R. Teyssier, 2002 Cosmological hydrodynamics with adaptive mesh refinement: a new high resolution code called ramses, Astron. Astrophys.385 337 [astro-ph/0111367]
[63] B. Bose, K. Koyama, W.A. Hellwing, G.-B. Zhao and H.A. Winther, 2017 Theoretical Accuracy in Cosmological Growth Estimation, Phys. Rev. D 96 023519 [1702.02348]
[64] B.S. Wright, H.A. Winther and K. Koyama, COLA with massive neutrinos, [1705.08165]
[65] A. Barreira, B. Li, C.M. Baugh and S. Pascoli, 2013 Spherical collapse in Galileon gravity: fifth force solutions, halo mass function and halo bias J. Cosmol. Astropart. Phys.2013 11 056 [1308.3699]
[66] B. Li, W.A. Hellwing, K. Koyama, G.-B. Zhao, E. Jennings and C.M. Baugh, 2013 The nonlinear matter and velocity power spectra in f(R) gravity, Mon. Not. Roy. Astron. Soc.428 743 [1206.4317]
[67] P. Brax, A.-C. Davis, B. Li, H.A. Winther and G.-B. Zhao, 2013 Systematic simulations of modified gravity: chameleon models J. Cosmol. Astropart. Phys.2013 04 029 [1303.0007]
[68] P. Brax, A.-C. Davis, B. Li, H.A. Winther and G.-B. Zhao, 2012 Systematic simulations of modified gravity: symmetron and dilaton models J. Cosmol. Astropart. Phys.2012 10 002 [1206.3568]
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.