A review of flexible multibody dynamics for gradient-based design optimization. (English) Zbl 1483.70023

Summary: Design optimization of flexible multibody dynamics is critical to reducing weight and therefore increasing efficiency and lowering costs of mechanical systems. Simulation of flexible multibody systems, though, typically requires high computational effort which limits the usage of design optimization, especially when gradient-free methods are used and thousands of system evaluations are required. Efficient design optimization of flexible multibody dynamics is enabled by gradient-based optimization methods in concert with analytical sensitivity analysis. The present study summarizes different formulations of the equations of motion of flexible multibody dynamics. Design optimization techniques are introduced, and applications to flexible multibody dynamics are categorized. Efficient sensitivity analysis is the centerpiece of gradient-based design optimization, and sensitivity methods are introduced. The increased implementation effort of analytical sensitivity analysis is rewarded with high computational efficiency. An exemplary solution strategy for system and sensitivity evaluations is shown with the analytical direct differentiation method. Extensive literature sources are shown related to recent research activities.


70E55 Dynamics of multibody systems
Full Text: DOI


[1] Abdallah, B.; Amine, M.; Khemili, I.; Aifaoui, N., Flexible slider crank mechanism synthesis using meta-heuristic optimization techniques: a new designer tool assistance for a compliant mechanism synthesis, Artif. Intell. Rev., 53, 4, 2809-2840 (2019)
[2] Abdallah, M. A.B.; Khemili, I.; Aifaoui, N., Optimization of a flexible multibody system design variables using genetic algorithm, Design and Modeling of Mechanical Systems - IV, 940-952 (2020), Berlin: Springer, Berlin
[3] Alexe, M.; Sandu, A., On the discrete adjoints of adaptive time stepping algorithms, J. Comput. Appl. Math., 233, 4, 1005-1020 (2009) · Zbl 1177.65098
[4] Ambrósio, J. A.C.; Neto, M. A.; Leal, R. P., Optimization of a complex flexible multibody systems with composite materials, Multibody Syst. Dyn., 18, 2, 117-144 (2007) · Zbl 1132.74034
[5] Arnold, M.; Brüls, O., Convergence of the generalized-\( \alpha\) scheme for constrained mechanical systems, Multibody Syst. Dyn., 18, 185-202 (2007) · Zbl 1121.70003
[6] Asrih, K.: Flexible multibody dynamics for design optimisation and parameter identification. Ph.D. thesis, Catholic University of Leuven (2019)
[7] Asrih, K.; Cosco, F.; Naets, F.; Desmet, W., Multibody based topology optimization including manufacturing constraints, The 5th Joint International Conference on Multibody System Dynamics (2018)
[8] Ata, A. A., Optimal trajectory planning of manipulators: a review, J. Eng. Sci. Technol., 2, 1, 32-54 (2007)
[9] Baier, H.; Seeßelberg, C.; Specht, B., Optimierung in der Strukturmechanik (1994), Wiesbaden: Vieweg, Wiesbaden
[10] Baier, H.; Seeßelberg, C.; Specht, B., Optimierung in der Strukturmechanik (2006), Dortmund: LSS Verlag, Dortmund
[11] Bauchau, O. A., Flexible Multibody Dynamics (2011), Berlin: Springer, Berlin · Zbl 1209.70001
[12] Baumgarte, J., Stabilization of constraints and integrals of motion in dynamical systems, Comput. Methods Appl. Mech. Eng., 1, 1, 1-16 (1972) · Zbl 0262.70017
[13] Bendsøe, M. P., Optimal shape design as a material distribution problem, Struct. Optim., 1, 193-202 (1989)
[14] Bendsøe, M. P.; Kikuchi, N., Generating optimal topologies in structural design using a homogenization, Comput. Methods Appl. Mech. Eng., 71, 2, 197-224 (1988) · Zbl 0671.73065
[15] Bendsøe, M.; Sigmund, O., Topology Optimization: Theory, Methods and Applications (2003), Berlin: Springer, Berlin · Zbl 1059.74001
[16] Berzeri, M.; Shabana, A. A., Development of simple models for the elastic forces in the absolute nodal coordinate formulation, J. Sound Vib., 235, 4, 539-565 (2000)
[17] Bestle, D., Analyse und Optimierung von Mehrkörpersystemen (1994), Berlin: Springer, Berlin · Zbl 0817.70002
[18] Bestle, D.; Eberhard, P., Analyzing and optimizing multibody systems, Mech. Struct. Mach., 20, 1, 67-92 (1992)
[19] Bestle, D.; Seybold, J., Sensitivity analysis of constrained multibody systems, Arch. Appl. Mech., 62, 3, 181-190 (1992) · Zbl 0759.70014
[20] Boopathy, K.; Kennedy, G., Adjoint-based derivative evaluation methods for flexible multibody systems with rotorcraft applications (2017)
[21] Boopathy, K.; Kennedy, G., Parallel finite element framework for rotorcraft multibody dynamics and discrete adjoint sensitivities, AIAA J., 57, 8, 3159-3172 (2019)
[22] Bottasso, C. L.; Campagnolo, F.; Croce, A.; Dilli, S.; Gualdoni, F.; Nielsen, M. B., Structural optimization of wind turbine rotor blades by multilevel sectional/multibody/3D-FEM analysis, Multibody Syst. Dyn., 32, 1, 87-116 (2013)
[23] Broyden, C. G., The convergence of a class of double-rank minimization algorithms: 1. General considerations, IMA J. Appl. Math., 6, 1, 76-90 (1970) · Zbl 0223.65023
[24] Brüls, O.; Lemaire, E.; Duysinx, P.; Eberhard, P.; Arczewski, K.; Blajer, W.; Fraczek, J.; Wojtyra, M., Optimization of multibody systems and their structural components, Multibody Dynamics: Computational Methods and Applications, 49-68 (2011), Berlin: Springer, Berlin · Zbl 1385.74017
[25] Callejo, A.; Narayanan, S. H.K.; Garcia de Jalon, J.; Norris, B., Performance of automatic differentiation tools in the dynamic simulation of multibody systems, Adv. Eng. Softw., 73, 35-44 (2014)
[26] Callejo, A.; Sonneville, V.; Bauchau, O., Discrete adjoint method for the sensitivity analysis of flexible multibody systems, J. Comput. Nonlinear Dyn. (2018)
[27] Cao, Y.; Li, S.; Petzold, L.; Serban, R., Adjoint sensitivity analysis for differential-algebraic equations: the adjoint DAE system and its numerical solution, SIAM J. Sci. Comput., 24, 3, 1076-1089 (2003) · Zbl 1034.65066
[28] Caracotsios, M.; Stewart, W. E., Sensitivity analysis of initial value problems with mixed ODEs and algebraic equations, Comput. Chem. Eng., 9, 4, 359-365 (1985)
[29] Choi, K. K.; Kim, N. H., Structural Sensitivity Analysis and Optimization 1: Linear Systems (2005), Berlin: Springer, Berlin
[30] Choi, W. S.; Park, G. J., Transformation of dynamic loads into equivalent static loads based on modal analysis, Int. J. Numer. Methods Eng., 46, 1, 29-43 (1999) · Zbl 0960.74029
[31] Choi, W. S.; Park, G. J., Structural optimization using equivalent static loads at all time intervals, Comput. Methods Appl. Mech. Eng., 191, 19-20, 2105-2122 (2002) · Zbl 1131.74327
[32] Chung, J.; Hulbert, G., A time integration algorithm for structural dynamics with improved numerical dissipation: the generalized-\( \alpha\) method, J. Appl. Mech., 60, 371-375 (1993) · Zbl 0775.73337
[33] Curtiss, C. F.; Hirschfelder, J. O., Integration of stiff equations, Proc. Natl. Acad. Sci. USA, 38, 3, 235-243 (1952) · Zbl 0046.13602
[34] de Veubeke, B. F., The dynamics of flexible bodies, Int. J. Eng. Sci., 14, 10, 895-913 (1975) · Zbl 0343.73002
[35] Deb, K.; Pratap, A.; Agarwal, S.; Meyarivan, T., A fast and elitist multiobjective genetic algorithm: NSGA-II, IEEE Trans. Evol. Comput., 6, 2, 181-197 (2002)
[36] Dembo, R. S.; Eisenstat, S. C.; Steihaug, T., Inexact Newton methods, SIAM J. Numer. Anal., 19, 2, 400-408 (1982) · Zbl 0478.65030
[37] Denavit, J., Hartenberg, R.S.: A kinematic notation for lower-pair mechanisms based on matrices. J. Appl. Mech. (1955) · Zbl 0064.15603
[38] Dias, J. P.; Pereira, M. S., Optimization methods for crashworthiness design using multibody models, Comput. Struct., 82, 17, 1371-1380 (2004)
[39] Dibold, M.; Gerstmayr, J.; Irschik, H., A detailed comparison of the absolute nodal coordinate and the floating frame of reference formulation in deformable multibody systems, J. Comput. Nonlinear Dyn., 4, 2 (2009)
[40] Ding, Z.; Li, L.; Li, X.; Kong, J., A comparative study of design sensitivity analysis based on adjoint variable method for transient response of non-viscously damped systems, Mech. Syst. Signal Process., 110, 390-411 (2018)
[41] Duddeck, F.; Wehrle, E. J., Recent advances on surrogate modeling for robustness assessment of structures with respect to crashworthiness requirements, 10th European LS-DYNA Conference (2015)
[42] Dwivedy, S. K.; Eberhard, P., Dynamic analysis of flexible manipulators, a literature review, Mech. Mach. Theory, 41, 7, 749-777 (2006) · Zbl 1095.70005
[43] Eberhard, P.; Schiehlen, W., Computational dynamics of multibody systems: history, formalisms, and applications, J. Comput. Nonlinear Dyn., 1, 1, 3-12 (2006)
[44] Ebrahimi, M.; Butscher, A.; Cheong, H.; Iorio, F., Design optimization of dynamic flexible multibody systems using the discrete adjoint variable method, Comput. Struct., 213, 82-99 (2019)
[45] Eschenauer, H.; Olhoff, N.; Schnell, W., Applied Structural Mechanics (1997), Berlin: Springer, Berlin
[46] Etman, L.; Van Campen, D.; Schoofs, A., Optimization of multibody systems using approximation concepts, IUTAM Symposium on Optimization of Mechanical Systems (1996), Berlin: Springer, Berlin · Zbl 0875.70066
[47] Etman, L. F.P.; van Campen, D. H.; Schoofs, A. J.G., Design optimization of multibody systems by sequential approximation, Multibody Syst. Dyn., 2, 4, 393-415 (1998) · Zbl 0933.74051
[48] Feehery, W. F.; Tolsma, J. E.; Barton, P. I., Efficient sensitivity analysis of large-scale differential-algebraic systems, Appl. Numer. Math., 25, 1, 41-54 (1997) · Zbl 0884.65086
[49] Fletcher, R., A new approach to variable metric algorithms, Comput. J., 13, 3, 317-322 (1970) · Zbl 0207.17402
[50] Forrester, A. I.J.; Sóbester, A.; Keane, A. J., Engineering Design via Surrogate Modelling: A Practical Guide (2008), New York: Wiley, New York
[51] Fox, L.; Goodwin, E. T., Some new methods for the numerical integration of ordinary differential equations, Math. Proc. Camb. Philos. Soc., 45, 3, 373-388 (1949) · Zbl 0033.28701
[52] Géradin, M.; Cardona, A., Flexible Multibody Dynamics: A Finite Element Approach (2001), New York: Wiley, New York
[53] Gerstmayr, J., The absolute coordinate formulation with elasto-plastic deformations, Multibody Syst. Dyn., 12, 4, 363-383 (2004) · Zbl 1174.70308
[54] Gerstmayr, J.; Irschik, H., On the correct representation of bending and axial deformation in the absolute nodal coordinate formulation with an elastic line approach, J. Sound Vib., 318, 3, 461-487 (2008)
[55] Gerstmayr, J.; Schöberl, J., A 3D finite element method for flexible multibody systems, Multibody Syst. Dyn., 15, 4, 305-320 (2006) · Zbl 1146.70318
[56] Gerstmayr, J.; Dorninger, A.; Eder, R.; Gruber, P.; Reischl, D.; Saxinger, M.; Schörgenhumer, M.; Humer, A.; Nachbagauer, K.; Pechstein, A.; Vetyukov, Y., HOTINT: a script language based framework for the simulation of multibody dynamics systems, ASME 2013 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference (2013)
[57] Gerstmayr, J.; Sugiyama, H.; Mikkola, A., Review on the absolute nodal coordinate formulation for large deformation analysis of multibody systems, J. Comput. Nonlinear Dyn., 8, 3 (2013)
[58] Gerstmayr, J.; Humer, A.; Gruber, P.; Nachbagauer, K., The absolute nodal coordinate formulation, Structure-preserving Integrators in Nonlinear Structural Dynamics and Flexible Multibody Dynamics, 159-200 (2016), Berlin: Springer, Berlin
[59] Ghandriz, T.; Führer, C., Topology optimization of dynamic structures and multibody systems based on reduced model adjoint sensitivity analysis, 28th Nordic Seminar on Computational Mechanics (2015)
[60] Ghandriz, T.; Führer, C.; Elmqvist, H., Structural topology optimization of multibody systems, Multibody Syst. Dyn. (2016) · Zbl 1404.70020
[61] Goldfarb, D., A family of variable-metric methods derived by variational means, Math. Comput., 24, 109, 23 (1970) · Zbl 0196.18002
[62] Gonçalves, J. P.C.; Ambrósio, J. A.C., Optimization of vehicle suspension systems for improved comfort of road vehicles using flexible multibody dynamics, Nonlinear Dyn., 34, 1, 113-131 (2003) · Zbl 1041.74528
[63] Griffith, D. T.; Turner, J. D.; Junkins, J. L., Some applications of automatic differentiation to rigid, flexible, and constrained multibody dynamics, ASME 2005 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference IDETC/CIE (2005)
[64] Gufler, V.; Wehrle, E.; Vidoni, R., Multiphysical design optimization of multibody systems: application to a Tyrolean weir cleaning mechanism, Advances in Italian Mechanism Science, 459-467 (2021), Berlin: Springer, Berlin
[65] Haftka, R. T.; Gürdal, Z., Elements of Structural Optimization (1992), Dordrecht: Kluwer, Dordrecht · Zbl 0782.73004
[66] Harzheim, L., Strukturoptimierung: Grundlagen und Anwendungen (2008)
[67] Haug, E. J.; Arora, J. S., Design sensitivity analysis of elastic mechanical systems, Comput. Methods Appl. Mech. Eng., 15, 1, 35-62 (1978) · Zbl 0381.73002
[68] Haug, E. J.; Arora, J. S., Applied Optimal Design: Mechanical and Structural Systems (1979), New York: Wiley, New York
[69] Haug, E. J.; Sohoni, V. N., Design sensitivity analysis and optimization of kinematically driven systems, Computer Aided Analysis and Optimization of Mechanical System Dynamics (1984), Berlin: Springer, Berlin · Zbl 0564.70029
[70] Haug, E.; Negrut, D.; Iancu, M., Implicit integration of the equations of multibody dynamics, Computational Methods in Mechanical Systems, 242-267 (1998), Berlin: Springer, Berlin
[71] Häußler, P.; Emmrich, D.; Müller, O.; Ilzhöfer, B.; Nowicki, L.; Albers, A., Automated topology optimization of flexible components in hybrid finite element multibody systems using ADAMS/Flex and MSC.Construct, 16th European ADAMS Users’ Conference (2001)
[72] Held, A.; Seifried, R., Gradient-based optimization of flexible multibody systems using the absolute nodal coordinate formulation, ECCOMAS Thematic Conference Multibody Dynamics (2013)
[73] Held, A.; Knüfer, S.; Seifried, R., Topology optimization of members of dynamically loaded flexible multibody systems using integral type objective functions and exact gradients, 11th World Congress on Structural and Multidisciplinary Optimization (2015)
[74] Held, A.; Knüfer, S.; Seifried, R., Structural sensitivity analysis of flexible multibody systems modeled with the floating frame of reference approach using the adjoint variable method, Multibody Syst. Dyn., 40, 287-302 (2017) · Zbl 1376.70011
[75] Henrici, P., Discrete Variable Methods in Ordinary Differential Equations (1962), New York: Wiley, New York · Zbl 0112.34901
[76] Hermle, M.; Eberhard, P., Control and parameter optimization of flexible robots, Mech. Struct. Mach., 28, 2-3, 137-168 (2000)
[77] Hilber, H. M.; Hughes, T. J.R.; Taylor, R. L., Improved numerical dissipation for time integration algorithms in structural dynamics, Earthq. Eng. Struct. Dyn., 5, 3, 283-292 (1977)
[78] Hindmarsh, A. C.; Brown, P. N.; Grant, K. E.; Lee, S. L.; Serban, R.; Shumaker, D. E.; Woodward, C. S., SUNDIALS: suite of nonlinear and differential/algebraic equation solvers, ACM Trans. Math. Softw., 31, 3, 363-396 (2005) · Zbl 1136.65329
[79] Humer, A.; Jungmayr, G.; Koppelstätter, W.; Schörgenhumer, M.; Silber, S.; Weidenholzer, G.; Weitzhofer, S., Multi-objective optimization of complex multibody systems by coupling HOTINT with MagOpt, Proceedings of the ASME 2016 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference (2016)
[80] Kang, B.; Choi, W.; Park, G., Structural optimization under equivalent static loads transformed from dynamic loads based on displacement, Comput. Struct., 79, 2, 145-154 (2001)
[81] Kang, B. S.; Park, G. J.; Arora, J. S., Optimization of flexible multibody dynamic systems using the equivalent static load method, AIAA J., 43, 4, 846-852 (2005)
[82] Karush, W.: Minima of functions of several variables with inequalities as side constraints. Master’s thesis, Department of Mathematics, University of Chicago (1939)
[83] Kennedy, G. J., Strategies for adaptive optimization with aggregation constraints using interior-point methods, Comput. Struct., 153, 217-229 (2015)
[84] Kennedy, G.; Boopathy, K., A scalable adjoint method for coupled flexible multibody dynamics, 57th AIAA-ASCE-AHS-ASC Structures, Structural Dynamics, and Materials Conference (2016)
[85] Kennedy, C.A., Carpenter, M.: Diagonally implicit Runge-Kutta methods for ordinary differential equations. A review. NASA (2016)
[86] Kennedy, G. J.; Hicken, J. E., Improved constraint-aggregation methods, Comput. Methods Appl. Mech. Eng., 289, 332-354 (2015) · Zbl 1423.70058
[87] Khemili, I.; Ben Abdallah, M. A.; Aifaoui, N., Multi-objective optimization of a flexible slider-crank mechanism synthesis, based on dynamic responses, Eng. Optim., 51, 6, 978-999 (2019)
[88] Kreisselmeier, G.; Steinhauser, R., Systematic control design by optimizing a vector performance index, International Federation of Active Controls Syposium on Computer Aided Design of Control Systems, 113-117 (1979), Amsterdam: Elsevier, Amsterdam · Zbl 0443.49028
[89] Kuhn, H. W.; Tucker, A. W., Nonlinear programming, Proceedings of the Second Berkeley Symposium on Mathematical Statistics and Probability, 481-492 (1951)
[90] Lambe, A.; Kennedy, G. J.; Martins, J., An evaluation of constraint aggregation strategies for wing box mass minimization, Struct. Multidiscip. Optim., 55, 257-277 (2016)
[91] Lauß, T.; Oberpeilsteiner, S.; Steiner, W.; Nachbagauer, K., The discrete adjoint gradient computation for optimization problems in multibody dynamics, J. Comput. Nonlinear Dyn., 12, 3 (2016) · Zbl 1425.70013
[92] Li, S.; Petzold, L., Software and algorithms for sensitivity analysis of large-scale differential algebraic systems, J. Comput. Appl. Math., 125, 1-2, 131-145 (2000) · Zbl 0971.65074
[93] Liang, M.; Wang, B.; Yan, T., Dynamic optimization of robot arm based on flexible multi-body model, J. Mech. Sci. Technol., 31, 8, 3747-3754 (2017)
[94] Liu, X., Sensitivity analysis of constrained flexible multibody systems with stability considerations, Mech. Mach. Theory, 31, 7, 859-863 (1996)
[95] Lyness, J. N., Numerical algorithms based on the theory of complex variable, 22nd ACM National Conference, 125-133 (1967), New York: ACM, New York
[96] Lyness, J. N.; Moler, C. B., Numerical differentiation of analytic function, SIAM J. Numer. Anal., 6, 2, 202-210 (1967) · Zbl 0155.48003
[97] Maly, T.; Petzold, L. R., Numerical methods and software for sensitivity analysis of differential-algebraic systems, Appl. Numer. Math., 20, 1-2, 57-79 (1996) · Zbl 0854.65056
[98] Mariti, L.; Belfiore, N. P.; Pennestrì, E.; Valentini, P. P., Comparison of solution strategies for multibody dynamics equations, Int. J. Numer. Methods Eng., 88, 7, 637-656 (2011) · Zbl 1242.70010
[99] Martins, J. R.R. A.; Hwang, J. T., Review and unification of methods for computing derivatives of multidisciplinary computational models, AIAA J., 51, 11, 2582-2599 (2013)
[100] Moghadasi, A.: Contributions to topology optimization in flexible multibody dynamics. Ph.D. thesis, Technischen Universität Hamburg (2019)
[101] Moghadasi, A.; Held, A.; Seifried, R., Topology optimization of members of flexible multibody systems under dominant inertia loading, Multibody Syst. Dyn., 42, 4, 431-446 (2017) · Zbl 1425.70015
[102] Nachbagauer, K.; Oberpeilsteiner, S.; Sherif, K.; Steiner, W., The use of the adjoint method for solving typical optimization problems in multibody dynamics, J. Comput. Nonlinear Dyn., 10, 6 (2015)
[103] Nada, A. A.; Al-Shahrani, A. S., Shape optimization of low speed wind turbine blades using flexible multibody approach, Sustainability in Energy and Buildings 2017: Proceedings of the Ninth KES International Conference, 577-587 (2017)
[104] Nada, A.; Hussein, B.; Megahed, S.; Shabana, A. A., Use of the floating frame of reference formulation in large deformation analysis: experimental and numerical validation, Proc. Inst. Mech. Eng., Proc., Part K, J. Multi-Body Dyn., 224, 45-58 (2010)
[105] Nejat, A. A.; Moghadasi, A.; Held, A., Adjoint sensitivity analysis of flexible multibody systems in differential-algebraic form, Comput. Struct., 228, 106-148 (2020)
[106] Nejat, A. A.; Held, A.; Seifried, R., An efficient adjoint sensitivity analysis of flexible multibody systems for a level-set-based topology optimization, Proc. Appl. Math. Mech., 20, 1 (2021)
[107] Newmark, N. M., A method of computation for structural dynamics, J. Eng. Mech. Div., 85, 3, 67 (1959)
[108] Omar, M. A.; Shabana, A. A., A two-dimensional shear deformable beam for large rotation and deformation problems, J. Sound Vib., 243, 3, 565-576 (2001)
[109] Pechstein, A.; Reischl, D.; Gerstmayr, J., A generalized component mode synthesis approach for flexible multibody systems with a constant mass matrix, J. Comput. Nonlinear Dyn., 8, 1 (2013)
[110] Petzold, L.; Li, S.; Cao, Y.; Serban, R., Sensitivity analysis of differential-algebraic equations and partial differential equations, Comput. Chem. Eng., 30, 10-12, 1553-1559 (2006)
[111] Pi, T.; Zhang, Y.; Chen, L., First order sensitivity analysis of flexible multibody systems using absolute nodal coordinate formulation, Multibody Syst. Dyn., 27, 153-171 (2012) · Zbl 1344.70014
[112] Romdhane, L.; Dhuibi, H.; Salah, H. B.H., Dynamic analysis of planar elastic mechanisms using the dyad method, Proc. Inst. Mech. Eng., Proc., Part K, J. Multi-Body Dyn., 217, 1, 1-14 (2003)
[113] Rong, B.; Rui, X.; Tao, L.; Wang, G., Theoretical modeling and numerical solution methods for flexible multibody system dynamics, Nonlinear Dyn., 98, 2, 1519-1553 (2019)
[114] Ross, C.: Strukturoptimierung mit Nebenbedingungen aus der Dynamik. Dr.-Ing. diss., Lehrstuhl B für Mechanik, Technische Universität München (1991)
[115] Samin, J. C.; Brüls, O.; Collard, J. F.; Sass, L.; Fisette, P., Multiphysics modeling and optimization of mechatronic multibody systems, Multibody Syst. Dyn., 18, 3, 345-373 (2007) · Zbl 1178.70075
[116] Schaffer, A., Stability of the adjoint differential-algebraic equation of the index-3 multibody system equation of motion, SIAM J. Sci. Comput., 26, 4, 1432-1448 (2005) · Zbl 1149.70310
[117] Schaffer, A.S.: On the adjoint formulation of design sensitivity analysis of multibody dynamics. Ph.D. thesis, University of Iowa (2005)
[118] Schatz, M. E.; Hermanutz, A.; Baier, H. J., Multi-criteria optimization of an aircraft propeller considering manufacturing, Struct. Multidiscip. Optim., 55, 3, 899-911 (2016)
[119] Schiehlen, W., Multibody system dynamics: roots and perspectives, Multibody Syst. Dyn., 1, 2, 149-188 (1997) · Zbl 0901.70009
[120] Schmit, L. A., Structural design by systematic synthesis, 2nd Conference on Electronic Computation (1960)
[121] Schumacher, A., Optimierung mechanischer Strukturen (2005), Berlin: Springer, Berlin
[122] Schwertassek, R.; Wallrapp, O., Dynamik flexibler Mehrkörpersysteme: Methoden der Mechanik zum rechnergestützten Entwurf und zur Analyse mechatronischer Systeme (1999), Berlin: Springer, Berlin
[123] Seifried, R.; Moghadasi, A.; Held, A., Analysis of design uncertainties in structurally optimized lightweight machines, Proc. IUTAM, 13, 71-81 (2015)
[124] Shabana, A.A.: An absolute nodal coordinate formulation for the large rotation and deformation analysis of flexible bodies. Tech. rep., University of Illinois at Chicago, Department of Mechanical Engineering (1996)
[125] Shabana, A. A., Flexible multibody dynamics: review of past and recent developments, Multibody Syst. Dyn., 1, 2, 189-222 (1997) · Zbl 0893.70008
[126] Shabana, A. A., Computational Dynamics (2010), New York: Wiley, New York · Zbl 1182.70002
[127] Shabana, A. A., Dynamics of Multibody Systems (2020), Cambridge: Cambridge University Press, Cambridge · Zbl 1434.70001
[128] Shanno, D. F., Conditioning of quasi-Newton methods for function minimization, Math. Comput., 24, 111, 647 (1970) · Zbl 0225.65073
[129] Sohoni, V. N.; Haug, E. J., A state space technique for optimal design of mechanisms, J. Mech. Des., 104, 4, 792-798 (1982)
[130] Squire, W.; Trapp, G., Using complex variables to estimate derivatives of real functions, SIAM Rev., 40, 1, 110-112 (1998) · Zbl 0913.65014
[131] Sun, J.; Tian, Q.; Hu, H., Structural optimization of flexible components in a flexible multibody system modeled via ANCF, Mech. Mach. Theory, 104, 59-80 (2016)
[132] Sun, J.; Tian, Q.; Hu, H., Topology optimization of a three-dimensional flexible multibody system via moving morphable components, J. Comput. Nonlinear Dyn., 13, 2 (2017)
[133] Sun, J.; Tian, Q.; Hu, H.; Pedersen, N. L., Simultaneous topology and size optimization of a 3D variable-length structure described by the ALE-ANCF, Mech. Mach. Theory, 129, 80-105 (2018)
[134] Sun, J.; Tian, Q.; Hu, H.; Pedersen, N. L., Topology optimization of a flexible multibody system with variable-length bodies described by ALE-ANCF, Nonlinear Dyn., 93, 2, 413-441 (2018) · Zbl 1398.74257
[135] Tortorelli, D. A.; Michaleris, P., Design sensitivity analysis: overview and review, Inverse Probl. Eng., 1, 1, 71-105 (1994)
[136] Trefethen, L. N.; Bau, D. III, Numerical Linear Algebra (1997), Philadelphia: SIAM, Philadelphia · Zbl 0874.65013
[137] Tromme, E.: Structural optimization of flexible components within a multibody dynamics approach. Ph.D. thesis, University of Liege (2015)
[138] Tromme, E.; Brüls, O.; Emonds-Alt, J.; Bruyneel, M.; Virlez, G.; Duysinx, P., Discussion on the optimization problem formulation of flexible components in multibody systems, Struct. Multidiscip. Optim., 48, 6, 1189-1206 (2013)
[139] Tromme, E.; Tortorelli, D.; Brüls, O.; Duysinx, P., Structural optimization of multibody system components described using level set techniques, Struct. Multidiscip. Optim., 52, 5, 959-971 (2015)
[140] Tromme, E.; Held, A.; Duysinx, P.; Brüls, O., System-based approaches for structural optimization of flexible mechanisms, Arch. Comput. Methods Eng. (2017) · Zbl 1397.74158
[141] Tromme, E.; Sonneville, V.; Guest, J. K.; Brüls, O., System-wise equivalent static loads for the design of flexible mechanisms, Comput. Methods Appl. Mech. Eng., 329, 312-331 (2018) · Zbl 1439.70010
[142] van Keulen, F.; Haftka, R. T.; Kim, N. H., Review of options for structural design sensitivity analysis. Part 1: linear systems, Comput. Methods Appl. Mech. Eng., 194, 30, 3213-3243 (2005) · Zbl 1091.74040
[143] Vanderplaats, G. N., Numerical Optimization Techniques for Engineering Design (1999) · Zbl 0613.90062
[144] Vanderplaats, G. N., Structural design optimization status and direction, J. Aircr., 36, 1, 11-20 (1999)
[145] Vermaut, M.; Naets, F.; Desmet, W., A flexible natural coordinates formulation (FNCF) for the efficient simulation of small-deformation multibody systems, Int. J. Numer. Methods Eng., 115, 11, 1353-1370 (2018)
[146] Vidoni, R.; Gasparetto, A.; Giovagnoni, M., Design and implementation of an ERLS-based 3-D dynamic formulation for flexible-link robots, Robot. Comput.-Integr. Manuf., 29, 2, 273-282 (2013)
[147] Vidoni, R.; Gasparetto, A.; Giovagnoni, M., A method for modeling three-dimensional flexible mechanisms based on an equivalent rigid-link system, J. Vib. Control, 20, 4, 483-500 (2014)
[148] Vidoni, R.; Gallina, P.; Boscariol, P.; Gasparetto, A.; Giovagnoni, M., Modeling the vibration of spatial flexible mechanisms through an equivalent rigid-link system/component mode synthesis approach, J. Vib. Control, 23, 12, 1890-1907 (2017) · Zbl 1373.70006
[149] Wang, L.; Diskin, B.; Biedron, R. T.; Nielsen, E. J.; Bauchau, O. A., High-fidelity multidisciplinary sensitivity analysis and design optimization for rotorcraft applications, AIAA J., 57, 8, 3117-3131 (2019)
[150] Wasfy, T. M.; Noor, A. K., Computational strategies for flexible multibody systems, Appl. Mech. Rev., 56, 6, 553-613 (2003)
[151] Wehrle, E., Gufler, V.: Analytical sensitivity analysis of dynamic problems with direct differentiation of generalized-\( \alpha\) time integration (2021). Submitted
[152] Wehrle, E.; Gufler, V., Lightweight engineering design of nonlinear dynamic systems with gradient-based structural design optimization, Proceedings of the Munich Symposium on Lightweight Design 2020, 44-57 (2021), Berlin: Springer, Berlin
[153] Wehrle, E. J.; Han, Y. H.; Duddeck, F., Topology optimization of transient nonlinear structures—a comparative assessment of methods, 10th European LS-DYNA Conference (2015)
[154] Wehrle, E.; Gufler, V.; Vidoni, R., Optimal in-operation redesign of mechanical systems considering vibrations—a new methodology based on frequency-band constraint formulation and efficient sensitivity analysis, Machines, 8, 1, 11 (2020)
[155] Wittenburg, J., Dynamics of multibody systems—a brief review, Acta Astronaut., 20, C, 89-92 (1989) · Zbl 0666.70012
[156] Xu, Q.: Extended surrogate modeling techniques for large scale structural design optimization. Dr.-ing. diss., Lehrstuhl für Leichtbau, Technische Universität München (2014)
[157] Xu, Q.; Wehrle, E.; Baier, H., Adaptive surrogate-based design optimization with expected improvement used as infill criterion, Optimization, 61, 6, 661-684 (2012) · Zbl 1248.65066
[158] Yang, X. S., Engineering Optimization: An Introduction with Metaheuristic Applications (2010), New York: Wiley, New York
[159] Zhang, M.; Peng, H.; Song, N., Semi-analytical sensitivity analysis approach for fully coupled optimization of flexible multibody systems, Mech. Mach. Theory, 159 (2021)
[160] Zheng, Y.; Shabana, A. A., A two-dimensional shear deformable ANCF consistent rotation-based formulation beam element, Nonlinear Dyn., 87, 2, 1031-1043 (2016)
[161] Zhu, Y.: Sensitivity analysis and optimization of multibody systems. Ph.D. thesis, Virginia Polytechnic Institute and State University (2014)
[162] Zimmermann, M.; Königs, S.; Niemeyer, C.; Fender, J.; Zeherbauer, C.; Vitale, R.; Wahle, M., On the design of large systems subject to uncertainty, J. Eng. Des., 28, 4, 233-254 (2017)
[163] Zwölfer, A.; Gerstmayr, J., Co-rotational formulations for 3D flexible multibody systems: a nodal-based approach, Contributions to Advanced Dynamics and Continuum Mechanics, 243-263 (2019), Berlin: Springer, Berlin · Zbl 1420.70004
[164] Zwölfer, A.; Gerstmayr, J., Preconditioning strategies for linear dependent generalized component modes in 3D flexible multibody dynamics, Multibody Syst. Dyn., 47, 65-93 (2019) · Zbl 1420.70004
[165] Zwölfer, A.; Gerstmayr, J., A concise nodal-based derivation of the floating frame of reference formulation for displacement-based solid finite elements, Multibody Syst. Dyn., 49, 291-313 (2020) · Zbl 1456.70008
[166] Zwölfer, A.; Gerstmayr, J., Consistent and inertia-shape-integrals-free invariants of the floating frame of reference formulation, Proceedings of the ASME 2020 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference (2020) · Zbl 1456.70008
[167] Zwölfer, A.; Gerstmayr, J., The nodal-based floating frame of reference formulation with modal reduction, Acta Mech. (2020) · Zbl 1456.70008
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.