Evertse, J. H.; Györy, K. Effective finiteness results for binary forms with given discriminant. (English) Zbl 0746.11020 Compos. Math. 79, No. 2, 169-204 (1991). B. J. Birch and J. R. Merriman [Proc. Lond. Math. Soc., III. Ser. 24, 385-394 (1972; Zbl 0248.12002)] proved that for arbitrary \(r\geq 4\), the are only finitely many \(\mathbb{Z}\)-equivalence classes of binary forms in \(\mathbb{Z}[X,Y]\) of degree \(r\) and given discriminant. Here equivalence is defined by transformations in \(GL(2,\mathbb{Z})\). They extended their result to binary forms whose coefficients belong to the ring of \(S\)-integers of an algebraic number field. Their proof was ineffective. The main tool in the proof was the finiteness of the number of solutions of the so-called unit equation \(\alpha x+\beta y=1\) in units \(x,y\) of the ring of integers of some given algebraic number field.The authors give an effective proof of the results of Birch and Merriman on binary forms with \(S\)-integral coefficients. Further, they give applications of these results to binary forms, algebraic numbers and discriminant form equations. Their results are formulated in a quantitative form. Reviewer: B.Richter (Berlin) Cited in 8 ReviewsCited in 12 Documents MSC: 11D57 Multiplicative and norm form equations 11E76 Forms of degree higher than two 11D75 Diophantine inequalities Keywords:Z-equivalence; binary forms; \(S\)-integral coefficients; discriminant form equations; finiteness theorems Citations:Zbl 0248.12002 PDF BibTeX XML Cite \textit{J. H. Evertse} and \textit{K. Györy}, Compos. Math. 79, No. 2, 169--204 (1991; Zbl 0746.11020) Full Text: Numdam EuDML OpenURL References: [1] A. Baker , Contributions to the theory of Diophantine equations. I. On the representation of integers by binary forms , Philos. Trans. Roy. Soc. London Ser. A 263 (1968), 173-191. · Zbl 0157.09702 [2] B.J. Birch and J.R. Merriman , Finiteness theorems for binary forms with given discriminant , Proc. London Math. Soc. 25 (1972), 385-394. · Zbl 0248.12002 [3] J. Coates , An effective p-adic analogue of a theorem of Thue , Acta Arith. 15 (1969), 275-305. · Zbl 0221.10025 [4] J.H. Evertse , On equations in S-units and the Thue-Mahler equation , Invent. Math. 75 (1984), 561-584. · Zbl 0521.10015 [5] J.H. Evertse and K. Györy , Thue-Mahler equations with a small number of solutions , J. Reine Angew. Math. 399 (1989), 60-80. · Zbl 0675.10009 [6] C.F. Gauss , Disquisitiones Arithmeticae , 1801 (German translation, 2nd edn, reprinted, Chelsea Publ. New York, 1981). · Zbl 0472.01010 [7] K. Györy , Sur les polynômes à coefficients entiers et de discriminant donné , Acta Arith. 23 (1973), 419-426. · Zbl 0269.12001 [8] K. Györy , Sur les polynômes à coefficients entiers et de discriminant donné . II. Publ. Math. Debrecen 21 (1974), 125-144. · Zbl 0303.12001 [9] K. Györy , On polynomials with integer coefficients and given discriminant, V, p-adic generalizations , Acta Math. Acad. Sci. Hungar. 32 (1978), 175-190. · Zbl 0402.10053 [10] K. Györy , On the number of solutions of linear equations in units of an algebraic number field , Comment. Math. Helvetici 54 (1979), 583-600. · Zbl 0437.12004 [11] K. Györy , On the solutions of linear diophantine equations in algebraic integers of bounded norm , Ann. Univ. Sci. Budapest. Eötvös. Sect. Math. 22-23 (1979-80), 225-233. · Zbl 0442.10010 [12] K. Györy , Effective finiteness theorems for Diophantine problems and their applications , Academic Doctor’s thesis, Debrecen, 1983 (in Hungarian). [13] K. Györy , Effective finiteness theorems for polynomials with given discriminant and integral elements with given discriminant over finitely generated domains , J. Reine Angew. Math. 346 (1984), 54-100. · Zbl 0519.13008 [14] K. Györy and Z.Z. Papp , On discriminant form and index form equations , Studia Scient. Math. Hung. 12 (1977), 47-60. · Zbl 0434.10014 [15] C. Hermite , Sur l’introduction des variables continues dans la théorie des nombres , J. Reine Angew. Math. 41 (1851), 191-216. · ERAM 041.1126cj [16] A. Korkine and G. Zolotareff , Sur les formes quadratiques , Math. Ann. 6 (1873), 366-389. · JFM 05.0109.01 [17] J.L. Lagrange , Recherches d’arithmétique , Nouv. Mém. Acad. Berlin, 1773, 265-312, Oeuvres, III, 693-758. [18] S. Lang , Algebraic Number Theory , Addison-Wesley Publ., Reading, Mass., 1970. · Zbl 0211.38404 [19] S. Lang , Fundamentals of Diophantine Geometry , Springer Verlag, New York, 1983. · Zbl 0528.14013 [20] D.J. Lewis and K. Mahler , Representation of integers by binary forms , Acta. Arith. 6 (1961), 333-363. · Zbl 0102.03601 [21] K. Mahler , Über die Annäherung algebraischer Zahlen durch periodische Algorithmen , Acta Math. 68 (1937), 109-144. · Zbl 0017.05701 [22] A. Markoff , Sur les forms quadratiques binaires indéfinies , Math. Ann. 15 (1879), 381-406. · JFM 11.0147.01 [23] L.J. Mordell , On numbers represented by binary cubic forms , Proc. London Math. Soc. 48 (1945), 198-228. · Zbl 0060.12002 [24] C.L. Siegel (Under the pseudonym X), The integer solutions of the equation y2 = axn + bxn-1 + ... +k , J. London Math. Soc. 1 (1926), 66-68. · JFM 52.0149.02 [25] C.L. Siegel , Abschätzung von Einheiten , Nachr. Göttingen Math. Phys. Kl. (1969), 71-86. · Zbl 0186.36703 [26] H.M. Stark , Some effective cases of the Brauer-Siegel Theorem , Invent. Math. 23 (1974), 135-152. · Zbl 0278.12005 [27] E. Weiss , Algebraic Number Theory , McGraw-Hill, New York, 1963. · Zbl 0115.03601 [28] R. Zimmert , Ideale kleiner Norm in Idealklassen und eine Regulatorabschätzung , Invent. Math. 62 (1981), 367-380. · Zbl 0456.12003 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.