×

zbMATH — the first resource for mathematics

Uniform minimum variance unbiased estimators for bivariate families. (English) Zbl 0746.62022
Summary: We consider uniform minimum variance unbiased (UMVU) estimation of an unbiased estimable function of distribution parameters for bivariate truncation (non-regular) parameter families. In particular, we derive the UMVU estimator of the probability that \(Y\) is less than \(X\).
MSC:
62F10 Point estimation
PDF BibTeX XML Cite
Full Text: DOI EuDML
References:
[1] Arnold BC, Strauss D (1988) Bivariate Distributions with Exponential Conditionals. Amer Statist Assoc J 83:522–527 · Zbl 0644.62013 · doi:10.2307/2288872
[2] Beg MA (1980) On the estimation ofPr[Y<X] for the two-Parameter Exponential Distribution. Metrika 27:29–34 · Zbl 0436.62029 · doi:10.1007/BF01893574
[3] Church JD, Harris B (1970) The estimation of reliability from stress-strength relationships. Technometrics 12:49–54 · Zbl 0195.20001 · doi:10.2307/1267350
[4] Downton F (1973) The estimation ofPr[Y<X] in the normal case. Technometrics 15:551–558 · Zbl 0262.62016 · doi:10.2307/1266860
[5] Rohatgi VK (1989) Unbiased estimation of parametric function in sampling from two one-truncation parameter families. Aust J Stat 31(2):327–332 · doi:10.1111/j.1467-842X.1989.tb00402.x
[6] Tiku ML (1988) Modified Maximum Likelihood Estimation for the Bivariate Normal. Communication in Statistics-Theory and Methods 17(3):893–910 · Zbl 0664.62051 · doi:10.1080/03610928808829663
[7] Tong H (1974) A note on the estimation ofPr [Y<X] in the exponential case. Technometrics 16:625 · Zbl 0292.62021 · doi:10.2307/1267617
[8] Tong H (1975) Letters to the editor. Technometrics 17:393 · Zbl 0312.34009 · doi:10.2307/1268093
[9] Zacks S (1971) The Theory of Statistical Inference. Wiley, New York
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.